ABSTRACT

Streptococcus pneumoniae is a major cause of morbidity and mortality, presenting with invasive infections such as lobar pneumonia, bacteremia and meningitis. The emergence of penicillin resistant strains since the 1970s has been life threatening and the number of cases that have been reported since then are mushrooming. The evolution of this species of bacteria has enabled it to develop resistance to many other antibiotics such as the macrolides and the fluoroquinolones. The increase in incidence of multi-drug resistance among *S. pneumoniae* necessitates a better understanding of the mechanisms of antibiotic resistance and a need for a tool to identify the presence of these genes within the strains in order to institute appropriate antimicrobial therapy. Penicillin and fluoroquinolone resistance was the main focus of this study. Penicillin resistance in *S. pneumoniae* is due to production of altered penicillin-binding proteins (PBPs), which are essential in cell wall synthesis. In order to study the mechanisms of penicillin resistance, the distribution of penicillin binding proteins (*pbp1a, pbp2b, pbp2x*) were first studied and associated to antibiotic profiles. The investigations showed that alteration in either one or more of these genes causes penicillin resistance with *pbp1a* being essential for the development of high level penicillin resistance. It has been reported that the cell wall of the resistant strains have an abnormal chemical composition, indicating a structural difference of the muropeptides. Branching of the muropeptides has been suggested as a cause of reduced binding of penicillin to the organism in resistant strains. This involves an operon encoded by the *murM* and *murN* genes. In this, it was shown that the penicillin resistant strains had an additional allele when compared to published sequences suggestive of a branched muropeptide structure. Further analysis of the cell wall using the Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Spectroscopy (NMR), showed that there was lack of
branching of the muropeptides in the sensitive strains with an absence of an aromatic structure. The higher transmittance value in the sensitive strain also postulates presence of molecular vibration of a larger mass as compared to the resistant strain, which had smaller vibrational energy. Pneumococci also require choline residues for the structure of the cell wall which can also be replaced by ethanolamine, which is a component of the pneumococci teichoic acid (muropeptides). In this study, an additional peak at 3.89 ppm, representing amino acids, betaine, glycerol phosphorylcholine, glycerol phosphoethanolamine, ethanolamine, glycerol, and glycerol-3-phosphate was only observed in the resistant strain, suggesting that the presence of the ethanolamine component has reduced the autolysis activity of the strain, causing it to be more tolerant to penicillin. The amino acid composition in the resistant strains indicates the presence of disaccharide tetrapeptide units covalently linked to teichoic acid chains. The variation in the nucleotide sequence of the murMN operon, together with the cell wall analysis using FTIR and NMR suggest that the branching structure of the cell wall may be the cause of reduced affinity of the cell wall to β-lactam drugs. In order to study the mechanisms of antibiotic resistance in S. pneumoniae, microarray was employed to study a wider range of genes that may play a role in the development of antibiotic resistance. Preliminary findings show that genes postulated to play a role in antibiotic resistance are mainly transport and growth factors such as the choline binding proteins which are expressed in the resistant strains but not expressed in the sensitive or intermediate strains. These proteins assist in the extrusion of the antibiotic from the bacteria, hence resulting in resistance. In this study, choline binding genes were expressed in the sensitive strain but not in the resistant strain. This could be a factor triggering autolysis and cell death as compared to the resistant strain that failed to lyse,
and hence remained tolerant. The expression of these genes could be further linked to triggering of the autolytic pathway, which may lead to the development of antibiotic resistance. In order to elucidate further the mechanisms of penicillin resistance, the similar microarray experiments was carried out using strains exposed to penicillin. Functional genes with significant expression levels were noted in genes encoding transport, transcription regulation, two component signal transduction, ribosomal proteins and cell surface proteins. Genes which are involved in the biosynthesis of the cell wall envelope such as penicillin binding proteins, choline binding proteins and D-alanylation of cell wall were noted to have significant expression levels upon penicillin stress. Hence, antibiotic stress has an effect on the bacterial physiology and gene regulation.

S. pneumoniae have been noted to be resistant to fluoroquinolone in countries in South East Asia, though in Malaysia to date there has been no resistance to fluoroquinolones. In order to study the mechanisms of fluoroquinolone resistance, two different mechanisms (point mutation in the QRDRs and the efflux pump) involved in fluoroquinolone were investigated to better understand the mechanisms as well as monitor the development of fluoroquinolones in Malaysia. *S. pneumoniae* isolates in Malaysia were characterized for mutations in the Quinolone Resistance Determining Regions (QRDRs) by PCR and sequenced, following which a real-time PCR method was developed to detect point mutations in the *gyrA* gene which was found to be common (gyrASer81-Phe) amongst the Malaysian isolates. 56 isolates of the 100 *S. pneumoniae* isolates were categorised to have reduced susceptibility to ciprofloxacin ($\geq 2\mu g/ml$). PCR amplification for presence of the *gyrA, parC, gyrB* and *parE* genes was carried out, of which the PCR product of 8 representative strains with various susceptibility to fluoroquinolones were sequenced. 2 out of the 8 isolates that were
sequenced were shown to have a point mutation in the \textit{gyrA} gene at position Ser81. There were no mutations detected within the \textit{gyrB} and \textit{parE}. The efflux pump is another mechanism by which \textit{S. pneumoniae} resistance to fluoroquinolones develops. Using Real-time PCR, 38 of the 56 strains had expression of the \textit{pmrA} gene. The \textit{pmrA} gene was expressed in only one of the 2 strains which had the mutation but the antibiotic susceptibility profiles of the two strains were similar. The other strain had low level expression. Therefore, this example suggests that there was no correlation seen between overexpression/low level expression of the \textit{pmrA} gene and mutation in the \textit{gyrA} gene. This would suggest that there would be an interplay of other multi-drug efflux pumps simultaneously in the development of antibiotic resistance in \textit{S. pneumoniae}. This also suggests that newer fluoroquinolones such as the ciprofloxacin, levofloxacin, gatifloxacin and moxifloxacin might not be substrates for the \textit{pmrA} efflux.

With the understanding of the mechanisms of antibiotic resistance, rapid methods were then developed so as to identify and detect antibiotic resistance strains using conventional and real-time PCR. Two sets of conventional multiplex PCRs (quintuplex and triplex PCR) to identify and characterize the antibitoic resistance genes, \textit{ermB}, \textit{pbp1A}, \textit{gyrA}, \textit{mefE} simultaneously with the \textit{S. pneumoniae} species specific pneumolysin gene and the common eubacteria gene were developed. The conventional multiplex PCR was then converted into a real-time format which enables detection of three genes simultaneously comprising the antibiotic resistance genes; \textit{ermB} and \textit{pbp2B} and pneumolysin gene (\textit{ply}), a \textit{S. pneumoniae} species specific gene. Both the assays were evaluated using 120 bacterial cultures and 20 direct blood cultures isolates. The results obtained by using these assays correlated to the antibiotic profiles that were reported using the standard laboratory methods. The assays also showed to be sensitive and specific when tested against a wide range of other bacteria. The
development of such a rapid, sensitive and specific technique has an advantage over the conventional method, which has a longer turnaround time. Detection of *S. pneumoniae* and its antibiotic resistance genes from a bacterial culture is possible within 3-4 hours using the conventional multiplex PCR assay but takes only an hour using the real-time multiplex PCR assay. This allows rapid identification of the antibiotic resistance genes, thus allows better prediction of the appropriate drug therapy.
ABSTRAK

S. pneumoniae yang resistan terhadap ‘fluroquinolone’ pula telah dilaporkan di negara-negara Asia Tenggara melainkan Malaysia. Ini menjadi perangang untuk lebih memahami mekanisma yang terlibat dalam resistensi kepada antibiotik ini. Dua mekanisma yang dikaji termasuk mutasi pada siri jujukan yang terdapat dalam ‘Quinolone Resistance Determining Region’ (QRDR) dan pem efflux. Isolat-isolat *S. pneumoniae* yang diperolehi di Malaysia dikaji untuk kewujudan mutasi. Untuk tujuan ini, PCR dan ‘sequencing’ digunakan. Kemudian teknik Real-time PCR dibentuk untuk mengesan mutasi tersebut. Hasil kajian ini mendapati mutasi pada gen *gyrA* pada kedudukan Ser81-Phe dijumpai dalam isolat-isolat Malaysia. 56 daripada 100 isolat yang dikaji menunjukkan nilai MIC yang lebih tinggi (> 2µg/ml) terhadap ‘ciprofloxacin’ (reduced susceptibility). Teknik PCR telah digunakan untuk mengesan gen *gyrA*, *gyrB*, *parC* dan *parE*. Hasil PCR daripada...

Dengan pengetahuan tentang mekanisma-mekanisma antibiotik resistan, teknik yang lebih cepat dibentuk untuk mengesan organisma ini dan juga gen-gen yang terlibat dalam resistan terhadap antibiotik. Teknik yang dibentuk menggunakan PCR dan Real-Time PCR. Dua set PCR (triplex dan quintuplux) dibentuk untuk mengesan gen pnumolysin, ply yang spesifik terhadap S. pneumoniae dan gen ermB, pbp1A, gyrA dan mefE. Real-Time PCR pula dibentuk untuk mengesan gen-gen ermB, ply dan pbp2b. Kedua-dua teknik ini diuji menggunakan 120 kultur bakteria dan 20 kultur darah (blood cultures). Hasil ujian tersebut menunjukan bahawa gen yang dikesan dalam isolat tersebut bersesuaian dengan laporan makmal dan profil antibiotik yang diperolehi menggunakan teknik makmal yang konvensional. Teknik-teknik ini juga adalah didapati sensitif dan
spesifik setelah diuji terhadap bakteria-baktaria lain. Dengan pembentukan teknik yang sebegini, masa untuk mengesan organisma dalam konteks diagnostik dapat disingkatkan. Teknik PCR dapat memberi keputusan yang dikehendaki dalam masa 3-4 jam manakala ia hanya mengambil masa 1 jam menggunakan teknik Real-Time PCR. Kesimpulannya, penyingkatan masa ini membolehkan ramalan yang lebih tepat bagi memilih antibiotik dalam mengubati pesakit.
ACKNOWLEDGMENT

I would like to like express my thanks and heartfelt gratitude to the following people that has contributed to my success. Firstly, I would like to thank my supervisor, Prof. Dr. Shamala Devi Sekaran (Department of Medical Microbiology, Faculty of Medicine, University Malaya) and my co-supervisor, Prof. Dr. N. Parasakthi (School of Medicine and Health Sciences, Monash University Malaysia), for their valuable, constructive advices and guidance throughout my study.

I would like to also convey my sincere thanks to Prof. Jae Hoon Song from Samsung Medical Centre, Sungkyunkwan University, Korea, for providing me the fluoroquinolones resistant reference strains.

My sincere thanks go to all my labmates, journal club members, and to the staff of the department of Medical Microbiology. And not to forget, my sincere love and appreciation goes to my parents and brother for their endless love, support, patience and cooperation.

Finally, I would like to also thank University of Malaya for granting me the PASCA scholarship, VOTE F scheme and the Ministry of Science, Innovation and technology for the funding that made this study possible. This research was supported by the grant of the Intensified Research of Priority Areas (IRPA), 36-02-03-6027.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Overview of *Streptococcus pneumoniae*
1.1.1 *Streptococcus pneumoniae* genome
1.1.2 Phenotypic characteristics of *Streptococcus pneumoniae*

1.2 *Streptococcus pneumoniae* infections
1.2.1 *Streptococcus pneumoniae* carriage

1.3 Treatment of pneumococcal infection

1.4 *Streptococcus pneumoniae* and antimicrobial resistance
1.4.1 History of antimicrobial resistance in *Streptococcus pneumoniae*
1.4.1.1 Penicillin resistance
1.4.1.2 Erythromycin resistance
1.4.1.3 TMP-SMZ resistance
1.4.1.4 Tetracycline resistance
1.4.1.5 Chloramphenicol resistance
1.4.1.6 Rifampin resistance
1.4.1.7 Multiple resistance
1.4.1.8 Resistance to other agents

1.5 Routine methods of identification of *Streptococcus pneumoniae*

1.6 Routine methods of detecting antimicrobial susceptibility levels in *Streptococcus pneumoniae*.

1.7 Mechanisms of antimicrobial resistance in *Streptococcus pneumoniae*
1.7.1 β-lactam resistance
1.7.1.1 Penicillin resistance
1.7.2 Macrolide resistance
1.7.3 Fluoroquinolone resistance
1.7.4 Other mechanisms of resistance

1.8 Hypothesis

xiii
1.8 Objectives

CHAPTER 2 MATERIALS & METHODS

2.1 Bacterial strains
 2.1.1 Preservation of strains

2.2 Biochemical identification and characterization of strains
 2.2.1 Colonial morphology
 2.2.2 Gram staining
 2.2.3 Catalase test
 2.2.4 Susceptibility to ethylhydrocupreine (optochin)
 2.2.5 Bile solubility

2.3 Antimicrobial susceptibility testing by minimum inhibitory concentration (MIC) determination
 2.3.1 Antibiotic preparation
 2.3.2 Preparation of agar plates containing antibiotic
 2.3.3 Preparation of bacterial inoculum

2.4 Characterization of strains and identification of antibiotic resistance genes using molecular methods:
 2.4.1 DNA extraction from pure bacterial cultures
 2.4.2 Conventional PCR to detect Streptococcus pneumoniae and identify its antibiotic resistance genes
 2.4.3 Real-time PCR to detect Streptococcus pneumoniae and identify its antibiotic resistance genes
 2.4.4 Characterization of \(pbp2b\) gene by PCR-RFLP

2.5 Development of molecular assays for simultaneous strain identification and detection of antibiotic resistant genes.
 2.5.1 Development of conventional multiplex PCR
 2.5.2 Development of Real-Time multiplex PCR

2.6 Differential gene expression of Streptococcus pneumoniae strains
 2.6.1 Bacterial strains and culture conditions
 2.6.2 RNA extraction from Streptococcus pneumoniae culture
 2.6.3 cDNA synthesis
 2.6.4 cDNA fragmentation and terminal labeling
 2.6.5 Microarray GeneChip hybridization
 2.6.6 GeneChip probe array washing and staining
 2.6.7 Comparison of Streptococcus pneumoniae strains with varying initial susceptibility to penicillin upon further penicillin stress.
 2.6.8 Microarray data analysis

xiv
2.7 Mechanisms of the development of antibiotic resistance genes 67

2.7.1 Characterization of genes involved in penicillin resistance
 2.7.1.1 Sequence variation of the murMN operon 68
 2.7.1.2 Variation of the cell wall composition 69

2.7.2 Characterization of genes involved in fluoroquinolones resistance
 2.7.2.1 Sequence analysis of genes encoding the Quinolone Resistance Determining Regions (QRDRs): gyrA, gyrB, parC, parE
 2.7.2.2 PCR amplification of the pmrA gene 73

CHAPTER 3 RESULTS 77

3.1 Bacterial strains 78
3.2 Identification using standard laboratory methods 82
 3.2.1 Susceptibility testing to ethylhydrocupreine hydrochloride (optochin)
 3.2.2 Morphology 82
 3.2.3 Antibiotic susceptibility 84
3.3 Characterization of strains and identification of antibiotic resistance genes using molecular methods 88
 3.3.1 Polymerase Chain Reaction- Restriction fragment length polymorphism analysis (RFLP) 88
 3.3.2 Conventional PCR 90
 3.3.2.1 PCR amplification of Streptococcus pneumoniae species specific genes: pneumolysin (ply) 90
 3.3.2.2 Amplification of eubacterial gene (16SrRNA) 91
 3.3.2.3 Amplification of S. pneumoniae using genus specific primers 92
 3.3.2.4 Amplification of genes encoding penicillin resistance: pbp1A, pbp2B, pbp2X 93
 3.3.2.5 Amplification of genes encoding macrolide resistance in S. pneumoniae 96
 3.3.2.6 PCR amplification of genes encoding fluoroquinolone resistance in S. pneumoniae 99
3.4 Development of rapid molecular assays for the detection of multiple genes in a single step 105
3.4.1 Conventional PCR 105
3.4.1.1 Conventional Multiplex PCR for the detection of \(pbp1\)A, \(erm\)B, \(gyr\)A, \(ply\) and eubacterial genes simultaneously 105
3.4.1.2 Multiplex for the detection of the macrolides resistance determinants 108
3.4.2 Real-Time PCR assays for the identification of \(S. pneumoniae\) (\(ply\)) and its antibiotic resistance Genes (\(erm\)B, \(pbp1\)A, \(pbp2\)B) 109

3.5 Application of the developed assays on clinical isolates and samples 115

3.6 Differential gene expression of \(Streptococcus pneumoniae\) strains 116
3.6.1 Differential expression of \(Streptococcus pneumoniae\) strains with varying initial susceptibility to penicillin 116
3.6.2 Differential expression of \(Streptococcus pneumoniae\) strains upon penicillin treatment 122

3.7 Mechanisms of the development of antibiotics resistance genes 130
3.7.1 Mechanism of penicillin resistance 130
3.7.1.1 DNA sequencing analysis of the \(murM\) and \(murN\) genes 130
3.7.1.2 Fourier transfer infrared spectroscopy (FTIR) analysis 134
3.7.1.3 Nuclear magnetic resonance (NMR) spectroscopy analysis 137
3.7.2 Mechanisms of fluoroquinolone resistance 140
3.7.2.1 DNA sequence analysis of the genes encoding the Quinolone Resistance Determining Region (QRDRs); \(gyr\)A, \(gyr\)B, \(par\)C, and \(par\)E 140
3.7.2.2 Efflux pump mechanism in the development of fluoroquinolone resistance 146

CHAPTER 4 DISCUSSION AND CONCLUSION 152

REFERENCES 173

APPENDICES 196

SCIENTIFIC MEETING ABSTRACTS & PUBLICATION 202

SUPPLEMENTAL DATA 215
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Schematic structure of the surface of S. pneumoniae</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Genome of bacterium strain R6</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Genome of bacterium strain TIGR4</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Gram stain picture of the S. pneumoniae isolated from a film of sputum.</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Colonies of a type 18C clinical isolate of S. pneumoniae showing phenotypic variation between opaque (solid arrow) and transparent (open arrow) colony forms when viewed with oblique, transmitted illumination on a transparent surface.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>History of the development of penicillin resistant pneumococci</td>
<td>20</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>Diagram depicting the chemical structure of penicillin and Cephalosporin</td>
<td>33</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Diagram depicting the chemical structure of erythromycin.</td>
<td>37</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Schematic representation of the structure of the mRNA from the inducible erm(B) gene from pAM77.</td>
<td>40</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>Diagram depicting the chemical structure of nalidixic acid</td>
<td>42</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>Diagram depicting the chemical structure of ciprofloxacin</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Bile solubility testing</td>
<td>82</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Sensitivity testing to ethylhydrocupreine hydrochloride</td>
<td>82</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Gram staining from a pure bacterial culture</td>
<td>83</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Gram staining from a sputum sample</td>
<td>83</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>PCR-RFLP of php2b gene in PSSP strains</td>
<td>89</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>PCR-RFLP of php2b gene in PSSP, PISP and PRSP strains</td>
<td>89</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>PCR amplification of the pneumolysin gene</td>
<td>90</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Ampification of the 16SrRNA gene in selected gram positive and gram negative bacteria</td>
<td>91</td>
</tr>
</tbody>
</table>
Figure 3.9: PCR amplification of streptococci genus specific primer.
Figure 3.10: Representative strains with altered and non-altered PBPs
Figure 3.11: Screening of mefE gene
Figure 3.12: PCR amplification of ermB gene
Figure 3.13: PCR amplification of gyrB gene
Figure 3.14: PCR amplification of gyrA gene
Figure 3.15: PCR amplification of parC and parE genes
Figure 3.16: Screening of isolates using the quintuplex PCR
Figure 3.17: PCR amplification of direct blood culture spiked with serial dilution of bacterial culture of known concentration (ATCC 49619)
Figure 3.18: PCR amplification to test the specificity of the assay
Figure 3.19: Triplex PCR of the macrolide resistance determinants and S. pneumoniae species specific gene.
Figure 3.20: Real-time PCR amplification of four genes separately
Figure 3.21: Representative amplification of real-time PCR assay
Figure 3.22: Sensitivity of real-time PCR assay
Figure 3.23: Real-time PCR amplification of three genes simultaneously (Triplex)
Figure 3.24(a): Comparative genomic hybridization of PISP versus PSSP
Figure 3.24 (b): Comparative genomic hybridization of PRSP versus PISP
Figure 3.24 (c): Comparison genomic hybridization of PRSP vs PSSP strain
Figure 3.25: PCR amplification of murM and murN gene
Figure 3.26: Typical spectra of a Fourier Tranfer Infrared Spectroscopy (FTIR)
Figure 3.27 (a): Typical spectra of the Proton Nuclear Magnetic Resonance Spectroscopy (NMR) - Strain 98 (Resistant)
Figure 3.27 (b): Typical spectra of the Proton Nuclear Magnetic Resonance Spectroscopy (NMR)- Strain 676 (Sensitive)
Figure 3.28: Melt curve from the amplification of gyrA gene representative pneumococcal strains strains using real-time PCR.
Figure 3.29: PCR amplification of the \textit{pmrA} gene

Figure 3.30 (a): Real–Time PCR amplification curve (\textit{pmrA} and \textit{16SrRNA})

Figure 3.30 (b): Melt curve analysis of the two genes (\textit{pmrA} and \textit{16SrRNA})

Figure 3.31: Expression levels of \textit{pmrA} gene
List of Tables

Table 1.1: Advantages and disadvantages of the different laboratory methods of pneumococcal susceptibility testing. 32

Table 1.2: Other Antibiotic Resistance Mechanisms 44

Table 2.1: The recommended solvent, diluent and the potency of the antibiotics used 50

Table 2.2: Primer sequences of the genes for characterization of \textit{S. pneumoniae} and its antibiotic resistance using PCR 54

Table 2.3: Probe sequences used to identify \textit{S. pneumoniae} and detect antibiotic resistance genes by Real-Time PCR 55

Table 2.4: Primer and probe concentration to identify \textit{S. pneumoniae} and detect antibiotic resistance genes by Real-Time PCR 60

Table 2.5: List of strains and the antimicrobial susceptibility used in the study 62

Table 3.1: Strains used in the study : Source and Patients’ demographic data 78

Table 3.2: Different categories of stains based on the susceptibility to penicillin 84

Table 3.3 (i): Antibiotic susceptibilities of Penicillin Sensitive \textit{Streptococcus pneumoniae} (PSSP) 85

Table 3.3 (ii): Antibiotic susceptibilities of Penicillin Intermediate \textit{Streptococcus pneumoniae} (PISP) 86

Table 3.3 (iii): Antibiotic susceptibilities of Penicillin Resistant \textit{Streptococcus pneumoniae} (PRSP) 87

Table 3.4: Antibiotic and gene profile of strains shown in figure 3.10 95

Table 3.5: Correlation of PBP genes with MIC values to penicillin 95

Table 3.6: Comparison of macrolide resistance determinants with MIC values of erythromycin against \textit{S. pneumoniae} strains 97

Table 3.7: Susceptibility levels of pneumococcal isolates to fluoroquinolones 102

Table 3.8: Antibiotic profile of strains that were sequenced to observe mutations in the QRDR 104

Table 3.9: Correlation of macrolide resistance determinants to MIC of erythromycin against \textit{S. pneumoniae} strains 109
Table 3.10: Number of strains used to validate the different assays

Table 3.11: Differentially expressed transport proteins

Table 3.12: Differentially expressed competence genes

Table 3.13: Differentially expressed choline binding proteins (CBPs)

Table 3.14: Differentially expressed beta lactam factors

Table 3.15: Differentially expressed ribosomal proteins

Table 3.16 (i): Expression of genes involved in cell envelope biosynthesis in PSSP, PISP and PRSP strains before and after exposure to penicillin - Penicillin binding proteins

Table 3.16 (ii): Expression of genes involved in cell envelope biosynthesis in PSSP, PISP and PRSP strains before and after exposure to penicillin - Genes involved in the D-alanylation of the cell wall

Table 3.16 (iii): Expression of genes involved in cell envelope biosynthesis in PSSP, PISP and PRSP strains before and after exposure to penicillin - Choline binding proteins (CBPs)

Table 3.17: Nucleotide sequence homology of the \textit{murM} gene from strains used in the study against the murM variant alleles.

Table 3.18: Assignment of functional groups from the Fourier Tranfer Infrared Spectroscopy (FTIR) analysis

Table 3.19: Chemical shift of the Proton Nuclear Magnetic Resonance (NMR) Analysis

Table 3.20: Antimicrobial susceptibility of representative strains for DNA sequence analysis and reference strains used in the study

Table 3.21: DNA sequence analysis of the genes encoding the \textit{gyrA} and \textit{parC} gene in the 8 representative isolates.

Table 3.22(a): Antimicrobial susceptibility profiles of strains with overexpression of \textit{pmrA} gene.

Table 3.22 (b): Antimicrobial susceptibility profiles of strains with low level expression of \textit{pmrA} gene.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSORP</td>
<td>Asian Network for Surveillance of Resistant Pathogens</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BaCl₂</td>
<td>Barium Chloride</td>
</tr>
<tr>
<td>BHI</td>
<td>Brain Heart Infusion</td>
</tr>
<tr>
<td>bp</td>
<td>Basepair</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine</td>
</tr>
<tr>
<td>CAP</td>
<td>Community – acquired pneumonia</td>
</tr>
<tr>
<td>CDC</td>
<td>Centre for Disease Control and Prevention</td>
</tr>
<tr>
<td>cfu</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical Laboratory Standards Institute</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CRO</td>
<td>Ceftriaxone</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>CXM</td>
<td>Cefuroxime</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleotide</td>
</tr>
<tr>
<td>DHFR</td>
<td>Dihydrofolate reductase</td>
</tr>
<tr>
<td>dH₂O</td>
<td>Distilled water</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine acid</td>
</tr>
<tr>
<td>ERY</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>G</td>
<td>Guanine</td>
</tr>
<tr>
<td>GAT</td>
<td>Gatifloxacin</td>
</tr>
<tr>
<td>HBA</td>
<td>Human Blood Agar</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrogen chloride</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Dihydrogen sulphate</td>
</tr>
<tr>
<td>I</td>
<td>Intermediate</td>
</tr>
<tr>
<td>KCL</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>LEV</td>
<td>Levofloxacin</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug-resistant</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>MHA</td>
<td>Mueller Hinton Agar</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory concentration</td>
</tr>
<tr>
<td>MIC<sub>50/90</sub></td>
<td>MIC at which 50% or 90% of growth are inhibited</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>MOX</td>
<td>Moxifloxacin</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotechnology Information</td>
</tr>
<tr>
<td>NPS</td>
<td>Nasopharyngeal secretion</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>Pbp or pbp</td>
<td>Penicillin binding protein</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
</tbody>
</table>