Production of 177Lu, a potential radionuclide for diagnostic and therapeutic applications
Mayeen Uddin Khandaker, Hiromitsu Haba, and Hasan Abu Kassim

Citation: AIP Conference Proceedings 1657, 120003 (2015); doi: 10.1063/1.4915229
View online: http://dx.doi.org/10.1063/1.4915229
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1657?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Cyclotron produced 67Ga, a potential radionuclide for diagnostic and therapeutic applications

Sci—Thur AM: YIS - 03: irtGPUMCD: a new GPU-calculated dosimetry code for 177Lu-octreotate radionuclide therapy of neuroendocrine tumors
Med. Phys. 41, 1 (2014); 10.1118/1.4894892

SU-E-T-13: Radiobiological Model for Evaluation of Targeted Radionuclide Therapeutic Potential in Metastases Control
Med. Phys. 38, 3488 (2011); 10.1118/1.3611963

Production Cross Sections of Some Radionuclides with Therapeutic Applications
AIP Conf. Proc. 769, 1676 (2005); 10.1063/1.1945331

New Cross Section Data for Production of the Therapeutic Radionuclides 64Cu, 140Nd, and 192Ir
AIP Conf. Proc. 769, 1631 (2005); 10.1063/1.1945319
Production of 177Lu, a Potential Radionuclide for Diagnostic and Therapeutic Applications

Mayeen Uddin Khandakera, Hiromitsu Haba, Hasan Abu Kassima

aDepartment of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
bNishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198, Japan

Abstract. 177Lu ($T_{1/2}=6.647\text{d}$; $E_{\beta}^{\text{max}}=498.3\text{keV}$, $I_{\beta}^{\text{total}}=100\%$; $E_{\gamma}=112.9498\text{keV}$, $I_{\gamma}=6.17\%$; $E_{\gamma}=208.3662\text{keV}$, $I_{\gamma}=10.36\%$) is widely used in many clinical procedures due to its excellent decay characteristics. Production cross-sections of the $^{\text{nat}}\text{Yb}(d,x)^{177}$Lu reactions have been measured from a 24-MeV deuteron energy down to the threshold by using a stacked-foil activation technique combined with high resolution γ-ray spectrometry. An overall good agreement is found with some of the earlier measurements, whereas a partial agreement is obtained with the theoretical data extracted from the TENDL-2013 library. Physical thick target yield for the 177Lu radionuclide was deduced using the measured cross-sections. The deduced yield curves indicate that a low energy (<11 MeV) cyclotron and a highly enriched 176Yb target could be used to obtain 177Lu with negligible impurity from 177mLu.

Keywords: 24-MeV deuteron, 177Lu cross-sections, physical yields, TENDL-2013.

PACS: 25.40.-h

INTRODUCTION

Several radiolanthanides such as 177Lu, 172Lu, 169Yb, and 175Yb, produced via neutron or charged-particles irradiations on natural or enriched ytterbium target find increasing applications in internal radiotherapy and imaging procedures. Among them, 177Lu ($T_{1/2}=6.647\text{d}$; $E_{\beta}^{\text{max}}=498.3\text{keV}$, $I_{\beta}^{\text{total}}=100\%$; $E_{\gamma}=112.9498\text{keV}$, $I_{\gamma}=6.17\%$; $E_{\gamma}=208.3662\text{keV}$, $I_{\gamma}=10.36\%$), a mixed β and γ-emitter is widely used in many clinical procedures due to its excellent decay characteristics. The emission of β particles makes it ideal in targeted radiotherapy applications [1,2], and the emissions of low energy photons facilitate simultaneous scintigraphy and dosimetry studies without posing any extra radiation dose to the patients [3]. Its half-life is long enough to allow sophisticated preparation (e.g., shipping, labelling, purification etc.) for use without any significant loss of activity. 177Lu can be produced in principle in several ways. Currently, a large scale production of 177Lu is in practice by using only the high flux nuclear reactor via the direct $^{176}\text{Lu}(n,\gamma)^{177}\text{Lu}$ or indirect $^{176}\text{Yb}(n,\gamma)^{177}\text{Yb}\rightarrow^{177}\text{Lu}$ routes followed by a complex separation procedure of 177Lu from the Yb isotopes [4]. On the other hand, the carrier-free 177Lu is available in the charged-particle irradiations on various targets, though its activity is relatively lower than those in the reactor productions [5-7, 8-10]. However, it may be possible to overcome this deficiency with recent high-power accelerator technologies, which enable large scale and on-site productions of 177Lu leading to its various practical applications.

A general survey of the literature reveals that only three earlier investigations [6-8] were carried out for the production of 177Lu via deuteron irradiations on ytterbium targets, but discrepancies are found among the reported data. Therefore, further experimental data are required to reduce the discrepancies and also to complement the data needed to optimize the production of 177Lu. Production cross-sections of $^{\text{nat}}\text{Yb}(d,x)^{177}$Lu reactions is therefore measured in the energy range of 2-24 MeV using the AVF cyclotron of the RIKEN RI Beam Factory, Wako, Japan.

EXPERIMENTAL DETAILS

The irradiation technique, radioactivity determination, and data deduction procedures were similar to our previous works [11-15]. A well-established stacked-foil activation technique combined with HPGe γ-ray spectrometry was employed to determine the production cross-sections of interest. Ytterbium foils (Yb) (99.9\% purity; 23-µm thickness; Rare Metallic Co. Ltd., Japan) having the natural isotopic composition [16] was used as the target material. Several foils of natural titanium (26-µm thickness, Goodfellow, UK) and aluminium (>99\% purity; 100-µm thickness; Nilaco Corp., Japan) were inserted in between any two consecutive Yb foils throughout the
whole stack. The stacked-foils were irradiated for 2.0 h with a 24-MeV deuteron beam from the AVF cyclotron with an average beam current of 210 nA. The activity measurements of the irradiated samples were started about a cooling time of 1 h after the end of bombardment (EOB) and repeated several times to remove the possible interfering nuclides. The IAEA recommended 88Ti(d,x^{48}V ($E_d=23.56$ MeV, $\sigma=222.6$ mb) [17] monitor reaction was used to determine the beam intensity. The deuteron energy degradation along the stacked foils was calculated by using SRIM-2003 [18]. The cross-sections were determined using a well-known activation formula [19-22]. The estimated uncertainty in the deuteron energy for each representing point in the stack ranges from ±0.4 MeV to ±0.8 MeV, whereas the estimated uncertainties in the cross-sections are in the range of 6.6-12.8%.

RESULTS AND DISCUSSION

Cumulative Production Cross-Sections of 177gLu

177Lu has two states, a long-lived meta-stable state 177mLu ($T_{1/2}=160.44$ d) and a relatively short-lived ground state 177Lu ($T_{1/2}=6.647$ d). In principle, the formation of 177Lu is contributed by several pathways: the direct 176Yb(d,n)177gLu reaction ($E_{th}=0.0$ MeV), β^- decay ($b_{\beta^-}=100\%$) of the short-lived parent 177Yb ($T_{1/2}=1.911$ h) produced via the 176Yb(d,p)177Yb reaction, and an IT decay ($b_{IT}=21.4\%$) of its long-lived isomeric state 177mLu within our investigated energy region. Therefore, the measured cross-section of 177Lu is cumulative cross-sections. 177Lu decays to the stable 177Hf via an emission of β^- particles ($b_{\beta^-}=100\%$) followed by the emission of 112.9498-keV ($I_{\gamma}=6.17\%$) and 208.3662-keV ($I_{\gamma}=10.36\%$) γ-lines. The relatively intense 208-keV γ-line is also a characteristic γ-line of its isomer 177mLu. By the following reasons, however, we concluded that this line is not contaminated by 177Lu. In this experiment, the formation of the meta-stable state 177mLu was not identified via its characteristic and interference-free 418.5188-keV γ-line ($I_{\gamma}=21.3\%$). Additionally, none of the highly intense and characteristic 112.95 keV ($I_{\gamma}=21.9\%$), 208.36 keV ($I_{\gamma}=57.4\%$), 228.48 keV ($I_{\gamma}=37.1\%$) or 378.50 keV ($I_{\gamma}=29.9\%$) γ-lines of 177mLu was detected in the γ-ray spectra acquired after a long cooling time of ~600 days.

![Figure 1](image_url)

FIGURE 1. Excitation function for the 176Yb(d,x)177gLu nuclear reactions (cumulative).

Actually, 177mLu makes no or only an insignificant contribution via an IT process ($b_{IT}=21.4\%$) to the formation of 177gLu, and this fact was also confirmed by the data extracted from the TENDL-2013 library (see Figure 1). The
The 208-keV peak also has the possibility to be contaminated by the characteristic 207.8-keV γ-line of 167Tm ($T_{1/2}=9.25$ d) formed via the 168Yb($d,2pn$) reaction ($E_{th}=8.5$ MeV). Note that the isotopic abundance of the target 168Yb is only 0.13%, therefore the contamination by 167Tm in the 208-keV peak was considered to be negligible. We also confirmed the negligible contribution of 167Tm by the decay curve analysis on the 208-keV γ-line.

Further, we confirmed that 172Gd formed via the 174Yb($d,4n$) ($E_{th}=19.6$ MeV) reaction contaminates the peripheral area of the 208.366-keV γ-line by its characteristic 210.28-keV γ-line ($I_{\gamma}=0.088\%$). As 174Yb is the highest abundant (31.81%) isotope among all of the activated target isotopes of Yb and the natYb(d,xn)172Lu reactions show a large cross-section above 20 MeV, the contribution of the 174Yb($d,4n$)172Lu channel at the weak 210.28-keV γ-line ($I_{\gamma}=0.088\%$) cannot be neglected. Therefore, the contribution of 172Gd in the 208.366-keV γ-line was separated following the standard equation available in our earlier publication [19]. Finally, the radioactivity of 177Lu was assessed by using the 208.3662-keV γ-line. The obtained cross-section was renormalized to the isotopic cross-section for the 176Yb($d,2n$)177Lu reaction since no other target isotope contributes to the formation of 177Lu.

The present result shows a good agreement (see in FIG. 1) with the earlier measurements by Hermann et al. [6] and Manenti et al. [7], but not with the recent measurement by Tarkanyi et al. [8]. The data from the TENDL-2013 library [23] do not properly reproduce our cumulative 177Lu cross-sections and found an agreement only up to 8 MeV. At the higher energy, only the shape of the measured excitation function with lower absolute values is reproduced by the TENDL-2013 library, and this underestimation is resolved if we replace the (d,p) cross-section in the TENDL-2013 library with the TENDL-2011 library [24] renormalized by Ignatyuk in the FENDL-3.0 library [25]. Therefore, we may expect the indirect 176Yb(d,p)177Yb\rightarrow^{177}Lu route makes the major contribution to the formation of 177Lu.

Thick Target Yields

Physical thick target yields were deduced using the measured cross-sections and the electronic stopping power of natural ytterbium over an energy range from threshold to the initial deuteron energy. A detailed explanation about the deduction of the yield is available in our previous publication [19-22]. The deduced yields in MBq/μA-h are shown in Figure 2.

![FIGURE 2. Physical thick target yields for the 176mLu and $^{177g+m}$Yb radionuclides.](image-url)
This experiment shows that the deuteron irradiation on the enriched 176Yb produces 174Lu, 174gLu, 176mLu, 177mLu, 177gLu, 175Yb, and 177Yb within our investigated energy region. Among them, the short-lived 177Yb ($T_{1/2}=1.911$ h) completely decays to the medically important 177Lu within a period of 19 hours after the EOB. The formation of 175Yb ($T_{1/2}=4.185$ d) via the 176Yb($d,p2n$) reaction could only be occurred after a practical threshold of 11 MeV. The formation of the long-lived 177Lu ($T_{1/2}=160.44$ d) was below the detection limit. The existence of the simultaneously produced short-lived 176mLu ($T_{1/2}=3.664$ h) via the 176Yb($d,2n$) reaction would practically be absent in the irradiated targets after ~30 hours from the EOB due to its decay to the stable 176Hf. Formation of 174mLu and 174gLu via the 176Yb($d,4n$) reaction could only be occurred after a practical threshold of ~18 MeV. Under these situations, the deduced yield curves show that a low amount of no-carrier-added radioactivity of 177Lu (2.4 MBq/μA-h) could be obtained at the 11-MeV deuteron energy on the enriched 176Yb target. However, a chemical separation procedure may facilitate a large scale production of 177Lu in a pure form by removing the simultaneously produced 175Yb contaminant. An approximate estimation based on the deduced yield curves show that a batch yield of 55 GBq of 177Lu could be obtained via 72 h irradiations of 18-MeV deuterons having a 100-μA beam current on a 250-μm thick metallic 176Yb target. It may be pointed out that the use of mA-range beam current from a high intense accelerator could provide a large scale on-site production of 177Lu leading to its various practical applications.

CONCLUSIONS

Deuteron-induced cross-sections of the 177Lu radionuclides were measured in the energy range of 2-24 MeV using a stacked-foil activation technique with an overall uncertainty of better than 13%. The measured data were critically compared with the available literature data and found an overall good agreement, and partial agreements were obtained with the extracted data from the TENDL-2013 library. The deduced yield curves indicate that a low energy (<11 MeV) cyclotron and a highly enriched 176Yb target could be used to obtain 177Lu with no/negligible impurity from 177mLu. Therefore, the obtained experimental data are indispensable for the applications in medical radioisotope production.

ACKNOWLEDGMENTS

This work was performed at the RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. The work was partially supported by the University of Malaya Research Grant (RP006D-13AFR).

REFERENCES