List of Figures

Figure 2.6 Different stages of carcinogenesis 14
Figure 2.9.1 Liposome construct 31
Figure 2.9.2 Niosome construct 33
Figure 2.9.3 Microparticles and nanoparticles 35
Figure 2.9.4 Simple polymeric micelle 36
Figure 2.9.5 Immunoconjugates 37
Figure 2.10 Linear polymer-anticancer drug conjugate (PDC) 38
Figure 2.15 Proposed reaction scheme for PG-G synthesis 54
Figure 3.4.1A Haemolysis at different PGNa concentration 67
Figure 3.4.1B Erythrocyte aggregation study (positive and negative controls) 68
Figure 3.4.1B III - VIII Erythrocyte aggregation in PGNa solution of different concentrations 68
Figure 3.4.2 Acute cell cytotoxicity study for PGNa in MCF-7 and MDA cells 70
Figure 4.1 Proposed reaction scheme for poly-L-glutamic acid gemcitabine (PG-G) synthesis 75
Figure 4.4.2 TLC monitoring profile for PG-G synthesis 98
Figure 4.4.3 TLC profile of PG-G after extraction, dialysis and freeze-drying protocol 100
Figure 4.4.4 Changes in synthesized PG-G’s G content and % of G in the reaction mixture that has integrated into the PG polymer in relation to changes in the amount of G employed in reaction

Figure 4.4.5 UV absorption spectra of PGNa

Figure 4.4.6 UV absorption spectra of PG-G, G and PGNa

Figure 4.4.7 Standard curve for gemcitabine concentration determination

Figure 4.4.8A - E RP-HPLC profiles of sample blank control, polymeric drug carrier control, unbound drug control, bound drug test sample and PG-G + G mixed sample

Figure 4.4.9 Standard curve for gemcitabine concentration estimation through RP-HPLC method

Figure 5.4.1A Molecular structure of gemcitabine

Figure 5.4.1B Molecular structure of poly-L-glutamic acid (PG-H)

Figure 5.4.1C Proposed molecular structure of poly-L-glutamic - gemcitabine (PG-G)

Figure 5.4.2A - D Scanning electronmicrographs of the PGH and PG-G
Figure 5.4.3 Molecular weight distribution of PGNa and PG-G estimated via SDS - PAGE electrophoresis

Figure 6.3.2.3A Standard curve for the determination of gemcitabine and gemcitabine derivatives concentration in plasma sample (Adapted from Appendix Ap 6.3.2.1 c3)

Figure 6.4.1 A & B G degradation at 4ºC and various pH (5.5, 7.4 & 9.5) over time

Figure 6.4.1 C & D G degradation at 25ºC and various pH (5.5, 7.4 & 9.5) over time

Figure 6.4.1 E & F G degradation at 37ºC and various pH (5.5, 7.4 & 9.5) over time

Figure 6.4.1 G & H PG-G degradation at 4ºC and various pH 5.5, 7.4 & 9.5) over time

Figure 6.4.1 I & J PG-G degradation at 25ºC and various pH 5.5, 7.4 & 9.5) over time

Figure 6.4.1 K & L PG-G degradation at 37ºC and various pH 5.5, 7.4 & 9.5) over time

Figure 6.4.1 M I - IV Comparison of the chromatograms of G and PG-G samples at day 8 of incubation (pH 7.4, 37ºC), obtained from HPLC run with mobile phase composition 0.02M AMN / ACN (5 : 5) and (9 : 1)
Figure 6.4.1 N
PG-G degradation profile (pH 7.4, PG-G went through repeated freeze thawing cycles)
174

Figure 6.4.2.1 A-E
Sample chromatograms of the PG-G and G incubated in plasma at 37°C
177-178

Figure 6.4.2.2A
G plasma degradation profile (8 days, 37°C)
180

Figure 6.4.2.2B
PG-G plasma degradation profile (8 days, 37°C)
181

Figure 7.4.1.1
In vitro cytotoxicity profile of PG-G (MCF-7 cells)
197

Figure 7.4.1.2
In vitro cytotoxicity profile of PG-G (MDA MB 231 cells)
198

Figure 7.4.1.3
In vitro cytotoxicity profile of PG-G (4T1 cells)
199

Figure 7.4.1.4
In vitro cytotoxicity profile of PG-G (HDF cells)
200

Figure 7.4.1.5
In vitro pulse-chase study profile of PG-G (MCF-7 cells)
202

Figure 7.4.1.6
In vitro pulse-chase study profile of PG-G (4T1 cells)
203

Figure 8.4.1
4T1 tumour growth curve for BALB/c mice
227

Figure 8.4.2.2A
Weight changes of BALB/c mice after treatment with single dose of PG-G, G, PGNa and normal saline (PG-G single injection study)
231
Figure 8.4.2.2B I and II Comparison of the spleen and gross abdominal anatomy of the mice treated with PG-G at the dose of 80 mg G eqv. /kg and mice treated with normal saline

Figure 8.4.2.4 Mice spleen and liver weight at the end of the single dose PG-G *in vivo* study

Figure 8.4.2.5A 4T1 Tumour growth profile in BALB/c mice after treatment with single dose of PG-G, G, PGNa and normal saline (PG-G single injection study)

Figure 8.4.2.5B 4T1 Tumour growth profile in BALB/c mice after receiving single dose PG-G treatment and intense multiple dose gemcitabine treatment

Figure 8.4.2.6 Mice spleen histology profiles for single dose *in vivo* study, 40x and 100 x magnification

A1-H1 and A2-H2 Mice kidney histology profiles for single dose *in vivo* study, 40x and 100 x magnification

Figure 8.4.2.6 Mice liver histology profiles for single dose *in vivo* study, 40x and 100 x magnification

A5-H5 and A6-H6 Mice lung histology profiles for single dose *in vivo* study, 40x and 100 x magnification

Figure 8.4.3.1A Weight changes of BALB/c mice after treatment with multiple (4) doses of PG-G, G, PGNa and normal saline.
Figure 8.4.3.1B: Mice’s spleen and liver weight at the end of PG-G multiple dose injection study

Figure 8.4.3.2: 4T1 Tumour growth profile in BALB/c mice after treatment with multiple doses of PG-G, G, PGNa and normal saline

Figure 8.4.3.3: Mice spleen histology profiles for multiple dose in vivo study, 40x and 100 x magnification

Figure 8.4.3.3: Mice kidney histology profiles for single dose in vivo study, 40x and 100 x magnification

Figure 8.4.3.3: Mice liver histology profiles for single dose in vivo study, 40x and 100 x magnification

Figure 8.4.3.3: Mice lung histology profiles for single dose in vivo study, 40x and 100 x magnification

Figure 9.1A: Water soluble Bolton-hunter reagent

Figure 9.1B: Derivatization and 131I radiolabelling of PG-G

Figure 9.4.2.1: Radiolabelling efficiency of PG-Ψ

Figure 9.4.2.2: Scintillation count result of the PD-10 column eluent

Figure 9.4.2.3: Binding status of the 131I to PG-Ψ

Figure 9.4.3.1 A & B: Total radioactivity changes in mice blood over time

Figure 9.4.3.1 C & D: Radioactivity concentration changes in mice blood over time
Figure 9.4.3.2A Radioactivity concentration changes in muscle, skin and bone 328

Figure 9.4.3.2B 131I-PG-GΨ radioactivity concentration depletion patterns in muscle, skin and bone 329

Figure 9.4.3.3A Radioactivity distribution in various mice’s major organs 331

Figure 9.4.3.3B Radioactivity concentration in various mice’s major organs 332

List of Figures for the Appendices (Ap) of the Various Main Chapters

Figure Ap 4.3.3.2A RP-HPLC profiles of PG-G and G mixed sample at different solvent composition 397

Figure Ap 4.3.3.2B Changes in area under curve for G and PG-G HPLC peaks at different mobile phase solvent combination 398

Figure Ap 4.3.3.2C Changes in peak height for G and PG-G HPLC peaks at different mobile phase solvent combination 399

Figure Ap 4.3.3.2D Interaction of G with solid phase at different mobile phase condition 401

Figure Ap 4.3.3.2E Interaction of PG-G with solid phase at different mobile phase condition 402

Figure Ap 6.3.2.1A Amicon Microcon centrifugal filter device 419

xxvi
Figure Ap 6.3.2.1B1 HPLC chromatograms of PBS, blank plasma, G, dU, dC and A 422-423

Figure Ap 6.3.2.1C2 Chromatogram comparison for the selectivity and specificity validation of the centrifugal-filter extraction - HPLC assay protocol 432

Figure Ap 6.3.2.1C3 Calibration curve for plasma G content determination 437

Figure Ap 6.3.2.1B2 HPLC chromatogram of plasma sample spiked with 0.2mM dC and G 425

Figure Ap 7.3.2.2 The plate map for the PG-G in vitro cytotoxicity study 446

Figure Ap 8.3.2.2 Positioning of mouse for blood collection from the jugular vein 460

Figure Ap 9.3.2.2 The ITLC setup 462