FACTORIAL STUDIES ON THE MORPHOLOGY, GROWTH AND LACTIC ACID PRODUCTION KINETICS OF A LOCALLY ISOLATED FILAMENTOUS FUNGUS IN SUBMERGED CULTURES

By

VILAS SULANG AGAS

A dissertation submitted in fulfillment for the degree of

Master of Science (Biotechnology)

at the

Faculty of Science,

University of Malaya

Kuala Lumpur

2009
Acknowledgements

I wish to express a heartfelt thank you to Prof. Irene Tan, for her guidance and patience towards me. Thanks also to my parents and family who are always supportive in my endeavours. Much appreciation to my close friends and labmates, past and present: Yasotha, Sharon, Shirley, Kok Loon and Chia Hong for making my experience in lab an enjoyable one. Deep thanks towards Dr Suffian, Dr. Lim and Syed Arnez for their wisdom and counsel. Thanks to Mr Karim, the senior lab technician for making my experience in lab an effortless one.
Abstract

15 different isolates of filamentous fungi were isolated from various sources. The 15 isolates were screened for their capacity for saccharifying starch and producing lactic acid. From the screening process, a strain TPH was selected for further studies. A resolution III fractional factorial experiment (conducted with shake flasks) was designed to create a series of linear models to evaluate the performance of morphology (based on filament ratio), specific substrate uptake rate, maximum specific growth rate and lactic acid yield. The five factors and their respective levels are: Inoculation size (1000 vs. 5000 spores/ml), degree of saccharified starch (0 vs. 100%), temperature (30 vs. 35°C), C/N ratio (1 vs. 4) and initial amount of carbon (0.185 vs. 0.555 M).

Experiments showed that maximum specific growth rate, filament ratio and specific substrate uptake rate were well represented by their respective linear models but not filament ratio and yield values. The model describing yield had to be transformed in order to show better model fit. After transforming procedures, the R² value of the model increased from 71.94% to 80.93%. There were also vast improvements in the residual values of the model.

Another experiment in a bench bioreactor was conducted to evaluate whether the constructed models were still usable when scale was increased. However experiments showed that the models performed poorly at that scale. This was likely due to the differences in mixing and aeration dynamics between shake-flasks and the bioreactor. Therefore the use of shake-flask experiments may not be ideal in evaluating TPH performance.
Table of contents

Page

<table>
<thead>
<tr>
<th>Title</th>
<th>..</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>..</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>..</td>
<td>iii</td>
</tr>
<tr>
<td>Table of contents</td>
<td>..</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>..</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>..</td>
<td>ix</td>
</tr>
<tr>
<td>List of Abbreviations and Symbols</td>
<td>..</td>
<td>x</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

1

Chapter 2: Objectives

3

Chapter 3: Literature Review

4

3.1 Brief history of LA

4

3.2 Physical and chemical properties of LA

4

3.3 Applications of LA

5

3.3.1 Applications of LA in the food and beverage industries

6

3.3.2 Applications of LA in the pharmaceutical and cosmetic industries

6

3.3.3 LA as raw materials for environmentally friendly polymers

6

3.4 LA production

8

3.4.1 Production of LA through chemical synthesis

8

3.4.2 Production of LA through biological synthesis

9

3.5 Fungal production of organic acids

11

3.5.1 Fungal production of LA

12

3.6 Scale-up challenges of fungal processes

15

3.6.1 Criticism of process modeling in shake flasks

16

3.7 Factorial experimental designs

17

3.8 Morphology of filamentous fungi in submerged cultures

19
Chapter 4: Materials, Methodology and Calculations

4.1 Materials

4.1.1 List of organism and equipment

4.1.2 List of media

4.1.3 List of reagents

4.2 Methodology

4.2.1 Isolation of fungi

4.2.2 Screening for potential lactic acid producers from among the isolates

4.2.3 Strain maintenance

4.2.4 Experimental design

4.2.5 Inoculum preparation

4.2.6 Determination of cell dry weight (CDW) from shake flasks

4.2.7 Colorimetric determination of lactic acid content

4.2.8 Colorimetric determination of reducing sugars

4.2.9 Colorimetric determination of starch

4.2.10 Image analysis

4.2.11 Fermenter experiments to evaluate the linear model generated from the FED

4.3 Calculations

4.3.1 Conversion factor of starch to glucose

4.3.2 Calculating concentrations of lactic acid, glucose and starch

4.3.3 Calculating yield of lactic acid per unit glucose consumed ($Y_{p/s}$)

4.3.4 Estimating μ_{max} and biomass carrying capacity (X_{max})

4.3.5 Solving the logistics equation

4.3.6 Characterizing pellet morphology using growth models

4.3.7 Characterizing pellet morphology using filament ratio

Chapter 5: Results and Discussion

5.1 Isolation of fungal organisms and screening for SSF capacity

5.1.1 Isolation of fungal organisms

5.1.2 Screening isolates for strains capable of SSF

5.2 Observations during shake-flask experiments
5.2.1 Characteristics of growth, pellet diameter and FR during factorial experiments54
5.2.2 Characterization of fungal morphology ..57
 5.2.2.1 Characterizing TPH morphology using established growth models60
 5.2.2.2 Characterization of morphology using filament ratio (FR)66
5.2.3 Growth kinetics of TPH ...68
5.2.4 LA production kinetics ...71
5.2.5 Substrate utilization kinetics ...74
5.2.6 Evaluating the effects of various factors on TPH growth and production parameters.77
 5.2.6.1 Factorial studies on FR ..79
 5.2.6.2 Factorial studies on μ_{max} ...86
 5.2.6.3 Factorial studies on q_s ...92
 5.2.6.4 Factorial studies on $Y_{p/s}$..98
5.2.7 Evaluating the linear models obtained from the FED ..108
5.2.8 Relationship of FR, μ_{max}, q_s and $Y_{p/s}$ of TPH ..110
 5.2.8.1 Relationship between μ_{max}, q_s and FR values ..110
 5.2.8.2 Relationship between μ_{max}, FR and $Y_{p/s}$ values ...111
 5.2.8.3 Relationship between q_s, FR and $Y_{p/s}$ values ...112
 5.2.8.4 Relationship between μ_{max}, q_s and $Y_{p/s}$ values ..114
5.3 Observations during fermenter experiments ..114
Chapter 6: Conclusion ...122
Reference List ..125
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Some of the characteristics of LA. (Adapted from Litchfield 1996).</td>
<td>5</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Raw materials and microorganisms that have been used for the biological production of LA. (Adapted from Yu & Hang 1989, Litchfield 1996 and Wee et al. 2006).</td>
<td>11</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Components of the screening medium for SSF of lactic acid.</td>
<td>26</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Components of the medium for FED experiments.</td>
<td>26</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Carbon sources and ((\text{NH}_4)_2\text{SO}_4) used to achieve desired C/N ratio.</td>
<td>27</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>List of locations and collected sample type for isolation work.</td>
<td>31</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Factors and levels with their respective codes used for FED.</td>
<td>35</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Conditions of the eight runs for the (2^{5-2}) (Resolution III) FED.</td>
<td>36</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Sequence of experiments and conditions for the FED.</td>
<td>37</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Summary of conditions used for fermenter experiments evaluate the model generated from shake flasks.</td>
<td>41</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Range of concentrations used to construct the required standard curves.</td>
<td>43</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Table of isolates and sources.</td>
<td>52</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Results of average coefficient of determination values as well as of morphology characterization using growth models.</td>
<td>63</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Effect of culture age on the coefficient of determination values of common growth models.</td>
<td>68</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Summary of fit of different growth models under different conditions.</td>
<td>69</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Table of experimental run order and conditions with their responses.</td>
<td>78</td>
</tr>
</tbody>
</table>
Table 5.6: ANOVA results of main and interaction effects on filament ratio (coded units).

Table 5.7: Estimated effects and coefficients for filament ratio (coded units).

Table 5.8: ANOVA results of the condensed model for filament ratio (coded units).

Table 5.9: ANOVA results of effects for μ_{max} (coded units).

Table 5.10: Estimated effects and coefficients for μ_{max} (coded units).

Table 5.11: ANOVA analysis of effects for the condensed model for μ_{max} (coded units).

Table 5.12: ANOVA results of main and interaction effects on μ_{max} (coded units).

Table 5.13: Estimated effects and coefficients of the model (coded units).

Table 5.14: ANOVA results of effects on the condensed model for q_s (coded units).

Table 5.15: ANOVA results for the effects on $Y_{\text{p/s}}$ (coded units).

Table 5.16: Estimated Effects and Coefficients for $Y_{\text{p/s}}$.

Table 5.17: ANOVA results of effects on the condensed model for $Y_{\text{p/s}}$ values (coded units).

Table 5.18: ANOVA results for transformed responses for $Y_{\text{p/s}}$ (coded units).

Table 5.19: Estimated effects and coefficients for transformed responses of yield (coded units).

Table 5.20: Summary of condensed and transformed models generated by the fractional factorial design.

Table 5.21: Summary of conditions used to test the model.
List of Figures

Figure 3.1 : Potential use of LA as a substitute for petrochemical polymer syntheses. (Adapted from Richter & Berthold 1998).

Figure 3.2 : Flow diagram of LA production using chemical synthesis. (Adapted from Anuradha et al. 1999).

Figure 3.3 : General schematic of simultaneous saccharification and production of LA in fungal organisms.

Figure 4.1 : Example of a linearized general logistics model used to estimate μ_{max} and X_{max}

Figure 4.2 : An example of a growth profile of TPH in shake flask modeled using the parameters as determined in section 4.4.4.

Figure 5.1 : Yields and productivity of LA produced by selected isolates.

Figure 5.2 : Typical profiles of filament ratio, CDW and pellet diameter of TPH during shake-flask cultivations.

Figure 5.3 : Typical profiles of Substrate concentration, CDW and specific growth rate of TPH during shake-flask cultivations for factorial experiments.

Figure 5.4 : Typical morphology of TPH during phase I of Shake flask cultivation.

Figure 5.5 : Typical morphology of TPH during phase II of Shake flask cultivation.

Figure 5.6 : Typical morphology of TPH during phase III of Shake flask cultivation.

Figure 5.7 : Comparison of TPH morphology under different experimental conditions.

Figure 5.8 : Comparison of fits between two different growth models.

Figure 5.9 : Comparison of residuals between the three different models (exponential, cube root and logistics) used to describe growth.
Figure 5.10 : Graph of specific LA production rate vs. specific growth rate used to determine α.

Figure 5.11 : Pareto chart of standardized effects of various factors on FR values.

Figure 5.12 : Residual plots of the full model for FR values.

Figure 5.13 : Residual plots of the condensed linear model for FR.

Figure 5.14 : Pareto chart of standardized effects of various factors on μ_{max}.

Figure 5.15 : Residual plots of the full model for μ_{max}.

Figure 5.16 : Residual plots for the condensed model for μ_{max}.

Figure 5.17 : Pareto chart of standardized effects for various factors on μ_{max}.

Figure 5.18 : Residual plots of the full model for q_s.

Figure 5.19 : Residual plots of the condensed model for q_s.

Figure 5.20 : Pareto chart of standardized effects of various factors on $Y_{p/s}$.

Figure 5.21 : Residual plots of the full model for $Y_{p/s}$.

Figure 5.22 : Residual plots of the condensed model for $Y_{p/s}$.

Figure 5.23 : Residual plots of the transformed model for $Y_{p/s}$.

Figure 5.24 : Comparisons of model performance to actual experimental values.

Figure 5.25 : Correlation of FR, μ_{max}, and q_s rate obtained from FED.

Figure 5.26 : Correlation between $Y_{p/s}$, μ_{max} and FR obtained from FED.

Figure 5.27 : Correlation between $Y_{p/s}$, q_s and FR obtained from FED.

Figure 5.28 : Correlation between $Y_{p/s}$, q_s and μ_{max} obtained from FED.

Figure 5.29 : Comparisons between model performance, experimental values in shake flasks and fermenter.
Figure 5.30 : Comparison of LA concentration profiles between shake-flask and fermenter.

Figure 5.31 : Comparison of growth profiles between shake flask experiments and fermenter experiments.

Figure 5.32 : Differences in morphology between fermenter and shake flask cultures at different time intervals.

Figure 5.33 : Comparison of filament ratio values obtained from shake flask and fermenter experiments to predicted values.
List of abbreviations and symbols.

CDW
Cell dry weight (mg/L).

FED
Factorial experimental design.

FR
Filament ratio.

LA
Lactic acid.

MS
Mean square.

SS
Sum of squares

SSF
Simultaneous saccharification and fermentation.

α
Growth associated constant.

β
non-growth associated constant.

µ\text{max}
Maximum specific growth rate (h\(^{-1}\)).

\(\frac{dP}{dt}\)
Rate of lactic acid production (mg L\(^{-1}\) h\(^{-1}\))

\(\frac{dX}{dt}\)
Rate of biomass increase (mg L\(^{-1}\) h\(^{-1}\))

P\(_0\)
Lactic acid concentration at time of inoculation (mg/L).

P\(_{\text{f}}\)
Peak lactic acid concentration (mg/L).

q_P
Specific rate of product formation (h\(^{-1}\)).

q_s
Specific substrate uptake rate (h\(^{-1}\)).

r_s
Volumetric rate of substrate uptake(h\(^{-1}\)).

S\(_0\)
Substrate concentration at time of inoculation (mg/L).

S\(_{\text{f}}\)
Substrate concentration at peak product concentration (mg/L).

\(t\)
Time (h).

X
Biomass values (mg/L).

X\(_0\)
Amount of initial biomass (mg/L).

X\(_{\text{max}}\)
Carrying capacity of fungal biomass in the fermentation (mg/L).

Y_{p/s}
Yield of lactic acid (mg lactic acid/ g glucose).