Cardiac Magnetic Resonance Imaging - A Predictor Tool for Sudden Cardiac Death

NILUFAR FATEMA1, MD. ABU SIDDIGUE1, SAJAL KRISHNA PANERJEE1, SYDE ALI AIBAN1, FAZLUR RAHMAN1, CHAUDHURY MESHAQAT AHMED1, MA MUQEET1, MOHAMMED ATIQUR RAHMAN2, KHURSHID AHMED3, FLOWARSHARMIN1, SHEIKH FOYIES AHMED1, MD. ASHRAF UDDIN SULTAN1, SHEIKH MUHAMMAD ABU BAKAR2

1Department of Cardiology, Bangabandhu Sheikh Mujib Medical University, Shahab, Dhaka. 2Department of Medicine, Bangabandhu Sheikh Mujib Medical University, Shahab, Dhaka. 3Department of Anatomy, Ibraim Medical College, Shahab, Dhaka

Address for correspondence: Dr. Nilufar Fatera, Consultant, Department of Cardiology, Bangabandhu Sheikh Mujib Medical University, Shahab, Dhaka. E-mail: nilufar.fatera@gmail.com

Abstract:
Cardiovascular magnetic resonance (CMR) detects myocardial fibrosis, which appears as late gadolinium enhancement (LGE) after gadolinium contrast administration and may convey prognostic importance. Myocardial fibrosis is the source of malignant arrhythmia like ventricular tachycardia or ventricular fibrillation. Sudden cardiac death occurs in these group patients. By detecting myocardial fibrosis we can select these groups of patients for implantable cardioverter defibrillator. Thus sudden cardiac death can be prevented in some extent.

Keywords: Cardiac MRI, Sudden cardiac death.

Introduction:
Patients with nonischemic cardiomyopathy (NICM) comprise one-third of the heart failure (HF) population and are at risk for significant morbidity and mortality,1,2 NICM is the most common indication for heart transplantation. Ten-year survival is below 60% with deaths often preceded by frequent hospitalizations for HF exacerbations. Forty percent of deaths are sudden cardiac death (SCD) and placement of an ICD for primary prevention reduces arrhythmic deaths in NICM patients with left ventricular ejection fraction (LVEF) <35%.3 However, risk stratification remains challenging, particularly in the individual patient in whom the clinical course frequently correlates poorly with LVEF. Better risk stratification tools might allow earlier intervention in high-risk patients, improving both quality of life and survival. In patients with NICM, myocardial fibrosis has been identified pathologically. Macroscopic regions of fibrosis have also been visualized by cardiovascular magnetic resonance (CMR), appearing as areas of late gadolinium enhancement (LGE). Increasing amounts of fibrosis potentially result in increased LV stiffness and reduced LV compliance, thereby progressively impairing both diastolic and systolic function, reducing cardiac output. One trial showed that the presence and extent of fibrosis in CMR LGE are associated with a higher risk of adverse cardiac outcomes in patients with NICM and LVEF ≤35%.

Sudden cardiac death (SCD):
SCD is the most common single cause of death in world. Yearly, worldwide, more than three million people will die due to SCD, the majority because of ventricular arrhythma (VA).4 It is possible to protect patients who are at risk for life-threatening VA and subsequent SCD with the implantation of the implantable cardioverter defibrillator (ICD).5 A low left ventricular ejection fraction (LVEF) is considered to be the most important risk factor in these cases. LVEF measured at rest has an important impact on long-term prognosis. The frequency of SCD increases with a decrease in LVEF.6 ICD implantation improved survival in patients with a prior myocardial infarction and an LVEF <30% in compared to conventional pharmacological treatment (amiodarone).7 ICD showed superior result in patients group with all-cause cardiomyopathy in combination with mild to moderate heart failure (NYHA class II or III) and an LVEF <35% than antiarrhythmic group.8 These results form the basis of the current ACC/AHA/ESC guidelines for the management of patients with VA and prevention of SCD. In these guidelines, the use of echocardiography is advised to measure LVEF.9 Two-dimensional echocardiography is the most widely used method to assess LVEF. This technique allows real-time imaging of the function and anatomy of the heart, is readily available, inexpensive and non-invasive. Important limitations are its operator dependency, acoustic window dependency, moderate reproducibility and accuracy,10,11 When accurate assessment by echocardiography is not feasible, other imaging modalities can be used.9

Cardiac magnetic resonance imaging (CMR):
CMR is one of the most accurate imaging methods.10,11 LVEF is measured by echocardiography, CMR,