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ABSTRACT

In this paper, we study totally umbilical proper slant submanifolds of a nearly Kaehler
manifold. We prove that every totally umbilical proper slant submanifold of a nearly
Kaehler manifold is totally geodesic.
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INTRODUCTION

The notion of slant submanifolds of an almost Hermitian manifold was
introduced by Chen (1990, 1991). These submanifolds are the generalization of
both holomorphic and totally real submanifolds of an almost Hermitian
manifold with an almost complex structure J. A nearly Kaehler structure on a
manifold provides an interesting study with differential geometric point of view
(Gray, 1969; Gray, 1970).

Consequently, the study of submanifolds of a nearly Kaehler manifold vis-a-
vis that of a Kaehler manifold assumes significance in general, then the study of
totally umbilical CR-submanifolds of a nearly Kaehler manifold has been
studied in (Khan et al., 1994). Later on, Khan & Khan (2007) extended this
study to the semi-slant submanifold of a nearly Kaehler manifold. Recently,
Sahin (2009) proved that every totally umbilical proper slant submanifold of a
Kaehler manifold is totally geodesic. In this paper we prove that a totally
umbilical proper slant submanifold of a nearly Kaehler manifold which has a
nearly Kaehler structure is totally geodesic.
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PRELIMINARIES

Let M be a Riemannian manifold with almost complex structure J and
Hermitian metric g satisfying (Yano & Kon, 1984),

(@) JP==1, (b) g(JX,JY)=¢g(X,Y), (1)

for all vector fields X, Y € I'(TM), where I'(TM) is the lie algebra of vector
fileds on M. If the almost complex structure J satisfies

(VxJ)X=0 (2)

for any X, Y € T'(TM), where V is the Levi-Civita connection on M then Mis
said to have a nearly Kaehler structure. In this case M is a nearly Kaehler
manifold. Equation (2) is equivalent to (VyJ) Y + (VyJ) X= 0. Obviously, every
Kaehler manifold is nearly Kaehler. The geometric meaning of nearly Kaehler
condition is that geodesics are holomorphically planer curves. So far as non
Kaehler, nearly Kaehler manifolds are concerned, one of the most prominent
example is that of S on a 6-dimensional unit sphere S° (Gray, 1969).

The covariant diffferentiation of the almost complex structure J is defined as
(VxJ)Y = VxJY-JVyY, (3)

forall X, Y € I'(TM).

Let M be a submanifold of a Riemannian manifold M and let I'(TM) be the
Lie algebra of vector fields in M and T'(7*M) the set of all vector fields normal
to M, then the Gauss and Weingarten formulas are given by

VxY=VyY+h(X,Y), (4)

VyN=—AnX+V3N (5)

for any X, Y € I'(TM), where V is the induced Riemannian connection on M, N
is vector field normal to M, / is the second fundamental form of M, V= is the
normal connection in the normal bundle 7+ M and Ay is the shape operator of
second fundamental form. Moreover, we have

g(ANX,Y) =g(h(X, Y),N). (6)

where g denotes the Riemanian metric on M as well as the metric induced on M.
The mean curvature vector H on M is given by
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H= 12?:1 h(ei,ei)

where n the dimension of M and (e;,e,,e,) is a local orthonormal frame of
vector fields on M.

A submanifold M of a Riemannian manifold M is said to be totally umbilical if
h(X,Y)=¢(X, Y)H. (7)

If /(X,Y)=0 for any X,Y € I'(TM), then the submanifold is said to be
totally geodesic.

Forany X € I'(TM), we write
JX =TX + FX, (8)

where TX and FX are tangential and normal components of JX, respectively.
Similarly, for any vector field N normal to M, we put

JN = (N + /N, )

where ¢tN and fN are the tangential and normal components of JN, respectively.

The covariant derivatives of 7, F, t and fare

(VxT)Y = VxTY-TVyY, (10)
(VxF)Y = VyFY-FVyY, (11)
(Vxt)N = VytN—tVgN, (12)
(V)N = VHIN—fVyN, (13)

forany X, Y € I'(TM) and N € I'(T* M).

Now, let us denote the tangential and normal parts of (va)Y by PyY
and 0,7, i.e.,

(VxJ)Y =PxY+ Q)Y

for any X, Y € I'(TM). By and easy computation, we obtain the following
formulae
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P)(Y: (vXT)Y—AFYX_th(XaY% (14)

OxY = (VxF)Y + h(X, 1Y) — —th(X,Y). (15)

Similarly, for any N € F(Tl M), denote the tangential and normal parts of
(VxJ)N by PyN and QyN respectively, we obtain

PyN = (Vxt)N + TAyX—ApnX, (16)
OxN = (Vyf)N + h(tN, X) + FAyX. (17)

From now on, for any non-zero vector X tangent to M at x, the angle 0(X)
between JX and T\ M is called Wirtinger angle of X. It is easy to observe that
Wirtinger angle 6(X) of X is in fact the angle between JX and TX. An
immersion f: M — M is called general slant imersion if the angle 6(X) is
constant (i.e., independent of the choice of x € M and x € T, M), in this case
the constant Wirtinger angle is called slant angle. Holomorphic and totally real
immersions with Wirtinger angle § = 0 and # = /2. A general slant immersion
which is neither holomorphic nor totally real is caled proper slant immersion
with slant angle 6 € (0, g)

A submanifold M of almost Hermition manifold M is slant submanifold of M
if and only if (Chen, 1990)
> =\ (18)

for some real number A€ [—1,0], where [ is the identity transformation of the
tangent bundle TM of the submanifold M. Moreover, if M is a slant
submanifold and @ is the slant angle of M, then A\ = —cos?f . Hence, for a
proper slant submanifold, we have

g(TX,TY) = cos’ g(X, Y) (19)
g(FX,FY) =sin’0 g(X, Y) (20)

forany X, Y € T'(TM).

Let M be a proper slant submanifold of an almost Hermitian manifold M,
then FT,M is subspace of TyM. Thus for any x € M, we decopose the normal
space as

T"M = FTM P
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where p is an invariant subbundle under J orthogonal to FTM.

TOTALLY UMBILICAL PROPER SLANT SUBMANIFOLDS

Throughout the section, we assume M to be a nearly Keahler manifold and M
be a submanifold of M. Thus, on a submanifold Mof a nearly Kaehler manifold
M, it follows from (2) that

(@) PyY+ PyX=0,  (b) OyY+ 0, X=0 (1)

for any X, Y € I'(TM). First, we assume that M is a totally umbilical
submanifold of a nearly Kaehler manifold M in Theorem 3.1 and then we
consider M as a totally umbilical proper slant submanifold of a nearly Kaehler
manifold M to prove our main result.

Theorem 3.1. Let M be a totally umbilical submanifold of a nearly Kaehler
manifold M. Then the following conditions are equivalent:

(1) The submanifold M has a nearly Kaehler structure (T, g)
(i) HeT(w
where H is the mean curvature vector on M.

Proof. As M is a totally umbilical submanifold then for any X € T'(TM), we
have

h(X, TX)= g(X, TX)H = 0.

Using (4) we obtain
Vx TX-VxTX = 0.
Then from (8), we get
VxJX — VyFX = VxTX.
Thus on using (3), we arrive at
(VxJ)X + IVxX — VyFX=VxTX.

Using (2), (4) and (5), we get

J(V X + h(X, X)) + ApxyX—V3FX =VxTX.
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Then from (8) and (9), we obtain
FVxX + TV X + th(X, X) + fh(X, X) + ApxyX-VyFX =VxTX.  (22)
Equating the tangential components, we get
TV X + th(X, X) + fh(X, X) + ApxyX =VxTX. (23)
As M is totally umbilical, the above equation takes the form
(VxT)X = g(X, X)tH+g(H,FX)X. (24)

The relation (24) has a solution that: if H € I'(u1), then (VyxT)X = 0 and vice-
versa. This completes the proof of the theorem.

Theorem 3.2. Let M be a totally umbilical proper slant submanifold of a nearly
Kaehler manifold M. Then M is totally geodesic with nearly Kaehler structure T.

Proof. For any X, Y € T'(TM), we have
(VxJ)Y = VxJY=JVyY.
Using (4) and (8), we get
PyY+ QOyY =VyTY+VyFY-TVyY — FVyxY — Jh(X, Y).

Again from (4) and (5), we obtain

PyY+ QyY=VyTY +h(X,TY)-ApyX+VyFY-TVyY — FVxY — Jh(X, Y).
Then from (7), we derive
PyY+ QyY =VyTY +g(X, TY)H-ApyX+ViFY-TVyY - FVyY - g(X, Y)JH.  (25)

Taking the product in (25) with JH and using the Theorem 3.1 (equivalent
conditions), we deduce that

¢(QxY,JH) = ¢(X, TY)g(H,JH) + g(VyFY,JH) — ¢(FVxY,JH) — g(X, Y)g(JH,JH).
Using (1) and again the Theorem 3.1 (equivalent conditions), we obtain

¢(OxY,JH) = g(VLFY,JH) — g(X, Y)| H|*
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Thus by (3), we get
g(QxY,JH) = g(VFY,JH) - g(X, V)| H|". (26)
Similarly, we can obtain
g(QyX,JH) = g(V,FX, JH) — g(X, Y)| H|". (27)
Adding (26) and (27) and on applying (21.b), we arrive at
2(VxFY,JH)+g(V,FX,JH) = 2g(X, V)| H|*. (28)
Now for any X € I'(T'M), we have
VyxJH =(V J)H+JV ¢ H.

Using (5), (8) and (9) in this equation, we get
— Ay X + V3JH =PxH+QxH-TAgX-FAgX + tVyH + fV3H.  (29)

Taking the inner product in (29) with FY for any Y € T'(TM), and using the
fact that fVyH € T'(11), the above equation gives

g(VyJH, FY) =—g(FAuX,FY)+g(QxH, FY). (30)
Then from (20), we get
g(VyJH, FY) =—sin’0 g(AuX,FY)+g(QxH, FY).

Since H € I'(u) (by Theorem 3.1), using (5) and (6), we obtain
g(VyFY, JH) =sin’6 g(h(X, Y), H)—g(QxH, FY).

Thus from (7), we derive

g(VxFY,JH) =sin?0 g(X,Y)| H|*—g(QxH, FY). (31)
Similarly, we obtain

g(VyFX, JH =sin’0 g(X,Y)||H|*—g(QyH, FX). (32)
Adding (31) and (32), we get

g(VxFY+VyFX, JH) = 2sin*0 g(X, Y)||H|*—g(QxH, FY)—g(QyH, FX). (33)
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Then from (28), we derive
2¢(X,Y)[|H|*= 2sin’6 g(X, Y)||H|*—g(QxH, FY)—g(QyH, FX).

That is
2c08%0 g(X, Y) | H|*+&(QxH, FY)+g(QyH, FX)= 0. (34)

Now, from (17), we have
g(OxH,FY) =g((Vx/)H,FY) + g(h(tH, X)FY) + g(FAy X, FY),

for any X, Y € I'(TM). Using the equivalent conditions of Theorem 3.1 and
then from (13) and (20), we obtain

2(OxH,FY) = sin’0 g(AyX, Y). (35)
Then from (6) and (7), we get
g(QxH, FY) = sin’0 g(X, Y)|| H|* (36)
Using this fact in (34), we obtain
g(X, V)| H|*= 0. (37)

It follows from (37) that H = 0, that is, M is totally geodesic. This proves the
theorem completely.
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