Research Article

Synthesis and Characterization of In$_2$S$_3$ Nanorods in Sucrose Ester Water-in-Oil Microemulsion

N. M. Huang

Low Dimensional Materials Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence should be addressed to N. M. Huang, huangnayming@gmail.com

Received 2 July 2011; Revised 11 August 2011; Accepted 11 August 2011

Academic Editor: Shuangxi Xing

Copyright © 2011 N. M. Huang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We report the synthesis of In$_2$S$_3$ nanorods in a nonionic sugar-based water-in-oil (w/o) microemulsion system using food grade sucrose ester as biosurfactant. In$_2$S$_3$ was formed by mixing indium (III) chloride and thioacetamide in the water core of the microemulsion system. The as-prepared yellowish In$_2$S$_3$ was characterized by X-ray diffractometry (XRD), UV-visible absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). Formation of spherical or rod-like In$_2$S$_3$ nanomaterials was dependent on reaction time. Rod-like In$_2$S$_3$, arranged in bundles, was formed only after 2 days of reaction time. Upon longer aging time, a mixture of rod-like and spherical In$_2$S$_3$ was formed. A plausible formation mechanism of the In$_2$S$_3$ nanorods in the sucrose ester microemulsion was postulated. The diameter of the In$_2$S$_3$ nanorods was found to be very small, which is 8.97 \pm 2.36 nm with aspect ratio of 20 : 1 (length : diameter).

1. Introduction

Due to the toxicity of transition metals like Cd and Pb, alternative metals have been studied for the production of metal sulfides like ZnS, SnS$_2$, and In$_2$S$_3$ [1, 2]. In$_2$S$_3$ is an interesting semiconductor with band gap energy of ~2.0 eV for bulk material [3, 4]. In$_2$S$_3$ is a metal sulfide group III–VI with potential application in optoelectronic, solar cells, and photoelectric [5, 6]. Many different types of techniques have been introduced for the synthesis of In$_2$S$_3$ in thin film or powder form with various morphologies [7, 8].

Conventionally, In$_2$S$_3$ was synthesized through direct reaction between indium and sulfur in a quartz chamber under high temperature [9], thermal treatment by In$_2$O$_3$ in the presence of H$_2$S gas at high temperature, thermal degradation of butylindium at the temperature of 300°C [10], or self-propagation with metathesis reaction between InCl$_3$ and Li$_2$S at the temperature of 500°C [11]. There are a lot of reports on the solution synthesis method, which includes precipitation in aqueous solution that yields amorphous or low crystalline indium sulfide from reaction between InCl$_3$ and H$_2$S, (NH$_4$)$_2$S [5], or NaHS [12], In$_2$S$_3$ formation in sodium polysulfide solution using laser ablation technique; In$_2$S$_3$ nanoparticles precipitation method by adding Na$_2$S into the InCl$_3$ solution in the presence of polymeric stabilizing agent [13], injection of H$_2$S into the In(ClO$_4$)$_3$ solution [14], and precipitation of In$_2$S$_3$ nanoparticles in microemulsion system. However, few works reported on the formation of 1-D In$_2$S$_3$ nanomaterials [15], thus, synthesis of 1-D In$_2$S$_3$ remains a great challenge.

W/o microemulsion systems have been employed for some time now as media for the preparation of nanoparticles. More popular surfactants including cetyltrimethylammonium bromide (CTAB) [16], sodium dodecylsulfate (SDS) [17], polyoxyethylene (10) tertocetylphenyl ether (Triton-X) [18], sodium bis(2-ethylhexyl)sulphosuccinate (AOT) [19] and polyethylene glycol-dodecylether (Brij 30) [20] have been used for the synthesis of nanomaterials. Our group had reported on the synthesis of spherical-shaped metal sulfides [21], tungsten oxide [22], PbS nanorods [23], and brushite nanofibers [24] using sucrose ester-based microemulsion.

In this paper, we utilized sucrose ester S1670 as the nonionic food grade surfactant to form w/o microemulsion (water/heptan-1-ol/sucrose ester) as a soft template for the synthesis of In$_2$S$_3$ nanorods. Sucrose ester is a green and biodegradable biosurfactant with raw material that comes