On Self-Clique Graphs all of whose Cliques have Equal Size

G.L. Chiaa and Poh-Hwa Ongb

aInstitute of Mathematical Sciences, University Malaya, 50603 Kuala Lumpur, Malaysia
bDepartment of Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, 46200 Petaling Jaya, Selangor, Malaysia

Abstract

The clique graph of a graph G is the graph whose vertex set is the set of cliques of G and two vertices are adjacent if and only if the corresponding cliques have non-empty intersection. A graph is self-clique if it is isomorphic to its clique graph. In this paper, we present several results on connected self-clique graphs in which each clique has the same size k for $k = 2$ and $k = 3$.

1 Introduction

Let G be a graph. By a clique in G, we mean a maximal complete subgraph of G. Let $\mathcal{K}(G)$ denote the set of all cliques in G. The clique graph of G, denoted $\mathcal{K}(G)$, is the graph whose vertex set is $\mathcal{K}(G)$ and two vertices are adjacent if and only if the corresponding cliques have non-empty intersection. A graph is self-clique if it is isomorphic to its clique graph. Self-clique graphs have been the subject of much discussion lately (see [2], [3], [4], [5], [9] and [10] for instance). This paper follows in the similar vein of thought by confining the attention on those self-clique graphs whose clique sizes are uniform.

Let $\mathcal{G}(k)$ denote the set of all connected self-clique graphs where each clique is of size k. In the present section, we record some known results concerning $\mathcal{G}(2)$ (Theorem 1). In the next section, while unable to determine all graphs in $\mathcal{G}(3)$, we turn to determine all those in $\mathcal{G}(3)$ which are 4-regular (Corollary 3) and all those in which the degree of any vertex is

ARS COMBINATORIA 105(2012), pp. 435-449