A geochemical overview of selected Palaeozoic and Mesozoic petroleum source rock analogues from outcrop studies, Peninsular Malaysia

Patrick Gou, Meor Hakil Amir Hassan, Yeow Boon Sim, Wan Hasiah Abdullah and Lee Chai Peng
Geology Department, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
07-08 March 2011

Study area

Why Palaeozoic & Mesozoic petroleum source rocks?
- Depleting petroleum resources
 - Need to look for unconventional hydrocarbons, including those derived from older & deeper petroleum source rocks
- Positive results from drilling of petroleum accumulations in older rocks (e.g. Anding Utara-1 oil discovery in metamorphic rocks, SW Malay Basin (Shahar, 2005); however these hydrocarbons are thought to be sourced from younger sediments positioned lower/deeper in grabens
- New technologies & increasing knowledge in the geology

Why should we be excited?
- Previous analysis of pre-Tertiary outcrop samples never showed strong signs for the presence of hydrocarbon
- A new type of petroleum system will open up new opportunities & lead to discoveries in places never thought possible

Geochemistry analysis workflow

Outcrop rock sample
- Rock samples crushed to fine powder
- Rock samples crushed to small granule & mounted in resin (polished block)
- Source Rock Analyzer (SRA-THP/TOC)
- Leica DM6000M petrogaphic microscope
- Gas chromatography-mass spectrometry (GC-MS)
- Bitumen extraction (Soxhlet apparatus)
- Bitumen/EO/M fractionation separated hydrocarbon fraction analysis by GC-MS
- Total Organic Carbon (TOC), S1, S2, S3, hydrogen index (HI), oxygen index (OI), Tmax
- Maceral description, vitrinite reflectance
- n-alkanes, isoprenoids, biomarkers

Results: Geochemistry analysis

Tembeling Group (lacustrine delta)

Semantan Formation (deep marine)

Copyright 2011 UNIVERSITY OF MALAYA

Samples studied come from the:
- West Crocker Fm
- Kota Gelanggi, Central Pahang
- Gelanggi plateau
- Kota Gelanggi, Central Pahang
- Upper delta shale, Kota Gelanggi, Central Pahang
- Tembeling Toll outcrop, Semantan Fm, Central Pahang
- Black Shales, Beseri, Perlis, NW Peninsular Malaysia

Outcrop points
- Bukit Chondon, Beseri, Perlis, NW Peninsular Malaysia
- Kota Gelanggi silty mudstone
- Kota Gelanggi delta shale
- Kota Gelanggi Upp Delta Sh, edited

Problems with the existing set of data
- Limited number of samples
- Evidences of possible hydrocarbon generation in the past might no longer be there due to hydrocarbon generation itself
- It is still difficult to estimate the initial conditions for the source rock (e.g. initial Hydrogen Index, initial Total Organic Carbon)

Formation
A geochemical overview of selected Palaeozoic and Mesozoic petroleum source rock analogues from outcrop studies, Peninsular Malaysia

Patrick Gou, Meor Hakif Amir Hassan, Yeow Boon Sim, Wan Hasiah Abdullah and Lee Chai Peng
Geology Department, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

07-08 March 2011

Result: Geochemistry analysis (continued)

Possible properties of Palaeozoic & Mesozoic petroleum source rock analogues

<table>
<thead>
<tr>
<th>Source rock analogue</th>
<th>Palaeozoic</th>
<th>Mesozoic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beseri black shales, Peninsular Malaysia</td>
<td>Kota Gelanggi terigenous sediments (delta?), Central Pahang, Peninsular Malaysia</td>
</tr>
<tr>
<td>Geological unit</td>
<td>Kubang Pasu Formation</td>
<td>Semenang Formation</td>
</tr>
<tr>
<td>Depositional environment</td>
<td>Shallow marine</td>
<td>Deep marine</td>
</tr>
<tr>
<td>Age</td>
<td>Permian (?)</td>
<td>Middle-Late Triassic</td>
</tr>
<tr>
<td>Geometry of geological unit (bathyal extent)</td>
<td>Extensive</td>
<td>Localised to extensive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of organic matter</th>
<th>Organic geochemistry</th>
<th>Other remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine</td>
<td>Marine, possibly with transported mesogenetic organic matter</td>
<td>Terigenous, possibly lacustrine (Tam, 2004)</td>
</tr>
<tr>
<td></td>
<td>Total Organic Carbon content at present day (weight %)</td>
<td>Up to 1.07 to 1.32</td>
</tr>
<tr>
<td></td>
<td>Hydrogen index, HI at present day (mg HC/g TOC)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tmax (° C)</td>
<td>Up to 494.2</td>
</tr>
<tr>
<td></td>
<td>Thermal maturity at present day</td>
<td>Overmature</td>
</tr>
<tr>
<td></td>
<td>Possible type of hydrocarbon generated</td>
<td>Oil, Gas</td>
</tr>
</tbody>
</table>

Vitrinite reflectance-Tmax relationship

<table>
<thead>
<tr>
<th>Average vitrinite reflectance (%Ro)</th>
<th>Tmax (° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>494.2</td>
</tr>
<tr>
<td>1.22</td>
<td>494.2</td>
</tr>
<tr>
<td>0.80</td>
<td>672.9</td>
</tr>
</tbody>
</table>

Sandstone-shale, Tembeling Group, Central Pahang

Total Organic Carbon, TOC (weight %): 4.43
Hydrogen index, HI (mg HC/g TOC): 57
Tmax (° C): 494.2

Sandstone-shale, Tembeling Group, Central Pahang

Total Organic Carbon, TOC (weight %): 1.32
Hydrogen index, HI (mg HC/g TOC): 92
Tmax (° C): 672.9

Some outstanding questions

- Are the deltaic sequences seen in Kota Gelanggi of Mesozoic age or younger (Tertiary)?
 - Work by Tam (2004) suggested a probable Tertiary age based on Cycas sp. plant fossils, in which a new formation (Putat Formation) was proposed.
 - Tmax and vitrinite reflectance of the Kota Gelanggi samples is close to the West Crocker Formation of NW Sabah which is of probable Eocene age (Lambiase et al., 2008).
 - If the sediments in Kota Gelanggi are of Tertiary age, how would they relate & compare to the other Tertiary basins in Peninsular Malaysia?
 - Which reservoirs would hold the hydrocarbon accumulations that are sourced from Palaeozoic and Mesozoic source rocks in Peninsular Malaysia?
 - Northern part of the Straits of Melaka (?)

What else is needed?

- More samples from various lithologies & depositional facies
- Laboratory analyses:
 - Gas chromatography-mass spectrometry (GC-MS)
 - Pyrolysis-gas chromatography (Py-GC)
 - Biostratigraphy
 - Source rock kinetics (e.g. SRA-Kinetics, hydrous pyrolysis)
 - Detailed petrographic analysis
- Better understanding of the geological & thermal history & evolution for future basin modelling studies
 - Studies on igneous rocks & metamorphism & how they could affect the petroleum system

Concluding remarks

- Palaeozoic & Mesozoic sedimentary rocks from Perlis & Central Pahang do exhibit the presence of hydrocarbons
- Further detailed laboratory & field analyses need to be carried out to confirm whether petroleum systems sourced by Palaeozoic & Mesozoic source rock intervals can produce & hold economic accumulations of hydrocarbons