ON r-REGULAR SUBGRAPHS WITH HAMILTONIAN CYCLES IN GRAPHS WITH MANY EDGES

Cheng Yeaw Ku and Kok Bin Wong

Department of Mathematics
National University of Singapore
Singapore 117543
e-mail: matkcy@nus.edu.sg

Institute of Mathematical Sciences
University of Malaya
50603 Kuala Lumpur, Malaysia
e-mail: kb-wong@um.edu.my

Abstract

In this paper, we prove that for $0 < \beta < 1/(2r + 1)$ and sufficiently large n, every graph G with n vertices and at least $n^{2-\beta}$ edges contains a subgraph G' with at least $n^{2-2\beta}/2^6$ edges, such that any t disjoint edges in G' lie together on an r-regular subgraph with at most $2rt$ vertices. Furthermore, the r-regular subgraph has a Hamiltonian cycle that contains all the t disjoint edges.

1. Introduction

All the graphs in this paper are simple and finite. The vertex set and edge set of a graph G will be denoted by $V(G)$ and $E(G)$, respectively. For a vertex $x \in G$, we shall denote its degree, i.e., the number of vertices adjacent...