CUED RECALL GRAPHICAL PASSWORD SYSTEM RESISTANT TO SHOULDER SURFING

LAII HOII LI @ LEE HOII LI

A THESIS SUBMITTED FOR THE MASTER OF COMPUTER SCIENCE IN THE FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, UNIVERSITY OF MALAYA

JULY 2009
Abstract

Access to computer system is often based on the use of alphanumeric passwords. However, users tend to have difficulty in remembering passwords that are long or randomly generated. As a consequence, they have the tendency to create short and simple passwords or write it in a text file and store it in an insecure place such as desk drawer (Adams and Sasse 1999; Morris and Thompson 1979), which in essence is highly vulnerable. To overcome such shortcoming, we proposed the use of graphical password. Graphical password essentially uses images or representation of images as passwords. Fundamentally, graphical password was designed to make passwords easier for user to remember, which should in reality points to a more secure password. According to some survey (Brostoff and Sasse 2000; De Angeli et al. 2002; De Angeli et al. 2005; Dhamija 2000; Dhamija and Perrig 2000; Wiedenbeck et al. 2005c), human’s brain is good in remembering picture than textual character.

There are various graphical password schemes or graphical password software in the market. However, it seems that only a few are capable of resolving the shoulder surfing issue. Therefore, this research would like to present a graphical password system which known as Cued Recall Graphical Password System Resistant to Shoulder Surfing (CRGPS) that uses a scheme that is resistant to shoulder surfing. The adapted scheme is based on the challenge response interactions and cued recall method. In challenge response interactions, server will present a challenge to the client and the client need to give response according to the condition given. If the response is correct then access is granted. Cued recall is basically a component of a memory task in which the subject will be asked to recall on items that were presented to them during an initial training or presentation with some hints being given. Cued recall method was used to increase user capability in remembering of password. During the usability testing, the experimenter explained the purpose of the system and how it worked using the user manual. After that, the participants proceed to login process to authenticate themselves. The first character of each password will be shown as a hint to the participant in the login process.

A usability testing was carried out to measure the satisfactory level of users on the completeness of the system, which include factors such as, turnaround time to access the system, remembering of password using the system and resistant to shoulder surfing. The testing result shows that the CRGPS is resistant to shoulder surfing. Besides, the CRGPS is also user friendly and easy to familiarise with the system.
Acknowledgment

I would like to express my deepest gratitude to my supervisor for this project, Dr. Omar Zakaria, for spending his precious time on supervising me throughout the semesters. I am thankful to him for the guidance and valuable comments, advices and suggestions that he has given to me throughout the duration of this project. My appreciation also goes to Lee Sin Yin, Lim Li Ann, Norhashimi Hussain and Chandrakumar s/o Sangapillai for providing references.
Table of Contents

Abstract... ii
Acknowledgment .. iii
Table of Contents .. iv
List of Figures.. viii
List of Tables ... xi

Chapter 1 Introduction... 1
1.1 Project Overview... 2
1.2 Project Motivation .. 3
1.3 Problem Definition .. 3
1.4 Objectives of the project ... 4
1.5 Project Scope .. 5
1.6 Project Constraints .. 5
1.7 Expected Outcome ... 5
1.8 Project Schedule ... 6
1.9 Conclusion... 6
1.10 Thesis Structure ... 7

Chapter 2 Literature Review... 8
2.1 Introduction ... 8
2.2 Authentication ... 9
2.3 Passwords as Authentication Method ... 10
2.4 Passwords Authentication .. 11
2.4.1 Textual Passwords... 11
2.4.2 Non Textual Passwords (Graphical Passwords)... 11
2.5 Aspects of Graphical Passwords .. 12
2.5.1 Remembrance .. 12
2.5.2 Hard to Guess .. 13
2.5.3 Resistant of Shoulder Surfing .. 13
2.6 Reviews on Existing Graphical Password Technique .. 14
2.6.1 Graphical Password Scheme by Greg Blonder ... 15
2.6.2 Draw - A – Secret (DAS) .. 16
2.6.3 Grid Selection .. 17
2.6.4 Graphical Password Scheme by Syukri et al. ... 17
2.6.5 Passpoints .. 18
2.6.6 Story ... 19
2.6.7 Déjà vu ... 20
2.6.8 Picture Password ... 21
2.6.9 Image-based Authentication ... 22
2.6.10 Challenge Response Authentication by Sobrado and Birget 22
2.6.11 Challenge Response Authentication by Man et al. (2003) 24
2.6.12 Challenge Response Authentication by Hong et al. (2004) 24
2.6.13 V-Go ... 25
2.6.14 visKey ... 26
2.6.15 PassFaces™ ... 27

2.7 Summarisation of Graphical Password Schemes and Software 29

2.8 Cued Recall Graphical Password System Resistant to Shoulder Surfing (CRGPS) .. 30

2.9 Conclusion ... 32

Chapter 3 Methodology ... 33

3.1 Software Development Approach Adapted .. 33
3.2 Suitability of the Proposed Approach ... 33
3.3 The Unified Process .. 34
3.3.1 The Core Workflows .. 36
3.3.2 The Iteration Workflows .. 48

3.4 Conclusion ... 50

Chapter 4 Requirement Capture and Analysis ... 51

4.1 Requirements Capture .. 51

4.1.1 Actor and Use Cases .. 51
4.1.2 Non-functional Requirements Analysis .. 65
4.1.3 User Interface .. 67
4.1.4 State Machine Diagram ... 67
4.1.5 Activity Diagram ... 68

4.2 Analysis .. 73

4.2.1 Use Case Realisation - Analysis ... 73
4.2.2 Analysis Class ... 77

4.3 A Review of Development Tools .. 78

4.3.1 Programming Languages .. 78
4.3.2 Relational Databases .. 82
4.3.3 Database Connectivity .. 83
Chapter 8 Discussion... 121
8.1 Problem Encounter .. 121
8.2 System strengths... 121
8.3 System Limitations.. 122
8.4 Research Contribution .. 122
8.5 Epilogue ... 122

BIBLIOGRAPHY .. 124

Appendix A – CRGPS’s Source Code I (Login).. 129
Appendix B – CRGPS’s Source Code II (Registration) ... 150
Appendix C – CRGPS’s Source Code III (Reset) .. 169
Appendix D – CRGPS’s Source Code (Failed Login).. 192
List of Figures

Figure 1-1 Flow chart analysing the deficiency of a typical alphanumeric passwords authentication system .. 3
Figure 1-2 Project scope for CRGPS ... 5
Figure 1-3 Gant chart showing the schedule of this project 6
Figure 2-1 Simple Layout of a Firewall (O’Gorman et al. 2005, pp. 546) 10
Figure 2-2 Graphical password scheme suggested by Blonder 1996 16
Figure 2-3 Draw – A – Secret scheme ... 17
Figure 2-4 Grid selection scheme .. 17
Figure 2-5 Syukri et al. scheme ... 18
Figure 2-6 Passpoints scheme ... 19
Figure 2-7 Story scheme ... 20
Figure 2-8 Déjà Vu scheme ... 20
Figure 2-9 Picture password scheme ... 21
Figure 2-10 Image-based authentication scheme .. 22
Figure 2-11 Sobrado and Birget’s first method-triangle scheme 23
Figure 2-12 Sobrado and Birget’s second method-intersection scheme 23
Figure 2-13 Sobrado and Birget’s third method-movable frame scheme 23
Figure 2-14 Shoulder surfing solution of Man et al. 24
Figure 2-15 V-Go login screens ... 26
Figure 2-16 visKey login screens ... 27
Figure 2-17 PassFaces™ login window ... 28
Figure 3-1 Models of the Unified Process .. 34
Figure 3-2 Phases further divided into more iteration 35
Figure 3-3 Core workflows in iteration .. 35
Figure 3-4 Iterations in action .. 35
Figure 3-5 Emphasis shifts over the iterations, from requirements capture and analysis toward design, implementation, and testing ... 36
Figure 3-6 The workflow of capturing requirements as use cases 37
Figure 3-7 Use cases model of CRGPS .. 38
Figure 3-8 CRGPS user interface design ... 39
Figure 3-9 Message state machine diagram .. 39
Figure 3-10 Login activity diagram ... 40
Figure 3-11 The workflow in analysis ... 41
Figure 6-3 Deployment diagram .. 104
Figure 6-4 The input and result of activity integrate system ... 105
Figure 6-5 The input and result of activity implement a subsystem 106
Figure 6-6 The input and result of activity implement a class 107
Figure 6-7 The input and result of activity perform unit test .. 107
Figure 7-1 The activities in workflow test ... 108
Figure 7-2 The input and result of activity plan test ... 109
Figure 7-3 The input and result of activity design test ... 110
Figure 7-4 The input and result of activity implement test .. 115
Figure 7-5 The input and result of activity perform integration test 116
Figure 7-6 The input and result of activity perform system test 116
Figure 7-7 The input and result of activity evaluate test ... 117
Figure 7-8 Mean times for input of 10 correct logins (N = 15) 118
List of Tables

Table 2-1 Summarisation of graphical password schemes or software 29
Table 3-1 Use cases and flow of events of Login in CRGPS 37
Table 3-2 Analysis class table ... 42
Table 3-3 Test cases of CRGPS .. 48
Table 4-1 Use case diagram’s symbol and explanation ... 51
Table 4-2 Use cases and flow of events Login process .. 52
Table 4-3 Use cases and flow of events of Register process 55
Table 4-4 Use cases and flow of events of Reset process .. 59
Table 4-5 State machine diagram’s symbol and explanation 67
Table 4-6 Activity diagram’s symbol and explanation ... 68
Table 4-7 Communication diagram’s symbol and explanation 73
Table 4-8 Analysis classes with their responsibilities and attributes 77
Table 4-9 Class diagram’s symbol and explanation ... 77
Table 5-1 Sequence diagram’s symbol and explanation .. 89
Table 5-2 DFD’s symbol and explanation ... 94
Table 5-3 Table Detail ... 96
Table 5-4 Table Password ... 96
Table 7-1 Test case about password of CRGPS ... 111
Table 7-2 Test cases about User ID of CRGPS .. 112
Table 7-3 Test cases about Login page of CRGPS .. 113
Table 7-4 Test cases about Register page of CRGPS ... 114
Table 7-5 Test cases about Reset page of CRGPS .. 115
Table 7-6 Comments on Shoulder Surfing the system ... 119
Chapter 1 Introduction

User authentication for network or internet based environment posed a challenging task for system and network administrator. This statement is truly and is still very much applicable till these days as it is a well known fact that authentication is being widely incorporated as part of access control for most systems.

Authentication has been the catalyst for business organisation in information protection and security. Implementation of access control policies, standards or procedures would surely involve the identification of appropriate authentication mechanism whereby the criticality of the information being protected are being used as justification for having a more refined authentication mechanism as compared to a more simple approach.

Without the appropriate authentication mechanism in place, attacker could easily gain access to systems or applications by utilising personal information, gained through various means, including but not limited to social engineering.

Conventional textual passwords are the most common mechanism used in authentication. This method requires a user to enter their username and password, either in alphabet or numeric, or more commonly, a mixture of both forms as authentication tokens to gain access to system or applications. Two recent surveys have shown that users choose short, simple passwords that are easily guessable, for example, “password”, personal names of family members, names of pets, and dictionary words (Sasse et al. 2001; Brown et al. 2004). Ironically, these practices are one of many loopholes that can be compromise easily. Therefore, it is essential that the application of this mechanism involve having appropriate complexity rules, such that the probability of password being crack is less likely.

Without the appropriate complexity, passwords can be easily crack through dictionary attack. With the complexity in place, especially when using a non dictionary word, users tend to type such passwords 40 percent slower than the time use for typing of dictionary words (Thomas et al. 2005). The slower rate of typing essentially would render the user more vulnerable to shoulder surfing. Shoulder surfing is basically a form of social engineering whereby an attacker would look over his/her victim shoulder to establish the password that are being entered.

To counteract the shoulder surfing problem and to make a balancing act on user friendliness and authentication complexity, we presented the usage of graphical
passwords in the authentication process to offset against shoulder surfing and make the graphical password system more memorable to the users by using cued recall method.

This chapter would be an introductory chapter to the project whereby an overview of the project, the motivations behind, definition of the problem domain, the objectives of the project, the project scope, project constraints, the expected outcome of this project, the project schedule will be presented. Finally, the conclusion of this chapter and a thesis structure respectively.

1.1 Project Overview

The outcome for this project would be a web based authentication system, with graphical password as the access control mechanism. The outcome is code name ‘CRGPS’ (Cued Recall Graphical Password System Resistant to Shoulder Surfing) and will be known as such throughout this document.

The implementation of the system on web platform is to ensure that the system is platform independent, which can be adapted for most, if not all type of systems. Also, as current trend shows, there is an urgent need to have a more secure authentication mechanism for web based environment, where most current systems are typically being emphasises on and where commercial growth are apparent at this moment. Our focus for this project is to ensure the balancing between user friendliness and hard to guess by using the graphical password authentication mechanism and will be discussed and presented throughout this document.

Present authentication system usually employ alphanumeric password for their access control, which has been in existence since 1960s. It is well known that such authentication mechanism are highly susceptible to attack as user has the tendency to choose passwords that are easy to remember, which means that it will also be easy for an attacker to crack it (Windenbeck et al. 2005a, 2005b, 2006). Essentially, this project would also emphasise on providing a secure environment to its user, without compromising on the user-friendliness of the system.
1.2 Project Motivation

This project is driven by the fact that there are many weaknesses for existing alphanumeric passwords authentication system. Most problems associated with alphanumeric passwords are related to the recollection of secure passwords (Windenbeck et al. 2005a, 2005b, 2006; Sobrado and Birget 2002).

In order to obtain a clearer view, a problem analysis was performed to locate the deficiencies of a typical alphanumeric passwords authentication system. The result is illustrated in Figure 1-1. Flow chart below outlined four problems of a typical alphanumeric passwords authentication system. These problems will be further discussed in section 1.3.

![Flow chart analysing the deficiency of a typical alphanumeric passwords authentication system](image)

1.3 Problem Definition

Through comparison of the four problems being mentioned in Figure 1-1, the problem associated to vulnerability to shoulder surfing is a major flaw that needs to be address for current authentication system including graphical password authentication system and traditional alphanumeric password authentication system. According to Webopedia Computer Dictionary, ‘shoulder surfing refer to a direct observation, such as looking over a person’s shoulder, to obtain information’ (Jupitermedia Corporation 2008). As define, shoulder surfing usually happen in busy and crowded place, where the person standing behind would try to peek over your back in order to obtain private
information, such as when you enter your private information into a web based check out shopping cart. Examples of private information are your ATM Pin number or credit card details.

Easy to guess passwords are the other common problem of traditional textual passwords. Many users choose textual passwords that are relatively easy to guess for convenient sake. The criticality of this problem has been analysed and emphasised in several studies (Klein 1990; Adams and Sasse 1999; Yan et al. 2000; Belgers 1993). For the past decade or so, crackers or hackers have been focusing on the usages of “dictionary attack”, along with buffer overflow and packet sniffing, in cases more than any other type of attack (Password Portal, Inc. 2004).

However, usage of a passwords which is not a dictionary word or is a hard to guess words, such as a pseudo phase, means that the password will bring about another issue, which is to remember the strong password. Passwords and PIN are use for variety of daily function such as authentication, access control and signatures. Thus, with so many passwords to remember, it would be quite impossible for users to manage them. A number of studies show that most users cannot remember a unique set of authenticator for each system they use (Adams and Sasse 1999; Weinshall and Kirkpatrick 2004; Yan et al. 2004). Apparently, this problem is the biggest contributor to usability issues.

It is known that typical eight character textual passwords would have much less password space as compared to graphical passwords. Typical textual passwords consist of upper or lower case character or no- alphanumeric character such as %, *, = and etc. The size of the textual password of length 8 was $95^8 \approx 2^{53}$. However, this comparison does not stop there as graphical passwords are typically more complicated and has a more complex access control mechanism as compared to traditional authentication system.

1.4 Objectives of the project

The objectives of this project are:
1. To study various methods of graphical password systems.
2. To develop an appropriate graphical password authentication system that is resistant to shoulder surfing.
3. To test and ensure that the developed graphical password authentication system resistant to shoulder surfing.
1.5 Project Scope

The system for this project will be developed through use of object-oriented method. The main purpose for usage of object-oriented method is to realise the objective of having an architecture design that are easily expandable and robust in nature. The project scope includes an authentication system that can connect to the other kind of system such as accounting system, administration system or payroll system as show in Figure 1-2.

![Figure 1-2 Project scope for CRGPS](image)

1.6 Project Constraints

Some of the project constraints are listed below:
1. Need to have Internet access.
2. The connection speed of the Internet Access might affect the effectiveness of the web-based environment.
3. Server’s low bandwidth could cause the connection to ‘drop’ and ‘down’ the website.
4. Extra hardware or software might be needed such as IIS 6.0.

1.7 Expected Outcome

The expected outcome of the project should be clearly outlined even before the development phase. These expectations are outlined by taking into account the capabilities of the system developer, technology available, as well as the project timeline. These expectations are as follows:
1. The Cued Recall Graphical Password System Resistant to Shoulder Surfing (CRGPS) is expected to be a platform allowing users to link to other system that using Microsoft OS without any difficulties.
2. The system should resistant to shoulder surfing.
3. The system should be user friendly and the password should be hard to guess.
4. The system should be well defined whereby any ‘hole’ of the system will be analyst thoroughly and ‘patch’ accordingly in system testing and unit testing.

5. A user manual will be provided to end users.

1.8 Project Schedule

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Start</th>
<th>End</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inception Phase</td>
<td>7/16/2007</td>
<td>8/2/2007</td>
<td>2.80w</td>
</tr>
<tr>
<td>2</td>
<td>Elaboration Phase</td>
<td>8/2/2007</td>
<td>9/3/2007</td>
<td>4.60w</td>
</tr>
<tr>
<td>3</td>
<td>Construction Phase</td>
<td>9/3/2007</td>
<td>10/8/2008</td>
<td>57.60w</td>
</tr>
<tr>
<td>4</td>
<td>Transition Phase</td>
<td>10/8/2008</td>
<td>12/31/2008</td>
<td>12.20w</td>
</tr>
</tbody>
</table>

![Gantt Chart]

Figure 1-3 Gant chart showing the schedule of this project

Figure 1-3 is a Gantt chart outlining the project schedule. Tasks identified for this project would follow the software development approach. The approach will be further described in Chapter 3.

1.9 Conclusion

The expected product for this project is a graphical password system that are resistant to shoulder surfing. The objective of this project would be to strive to identify and study the pros and cons of existing graphical password system and to come out with a more comprehensive graphical passwords authentication system. It is also hopeful that the new system would be able to address the four problem identified earlier, which are difficulty in remembering of strong password, vulnerability of current method to shoulder surfing, insufficient passwords space or complexity and vulnerability of password to dictionary attack for easy to guess passwords. Other than the graphical passwords system, a printed user manual will also be provides as part of this project.
1.10 Thesis Structure

This research focuses on the development of a system named Cued Recall Graphical Password System Resistant to Shoulder Surfing (CRGPS), a web-based authentication system. There are total twelve chapters in this report. The first chapter is the introduction to the project. This chapter would provide a short outline and introduction of the CRGPS. Details included are the project overview, project motivation, problem definition, objectives of the project, project scope, project constraints, expected outcome, project schedule, conclusion and thesis structure.

The second chapter is the literature review where research conducted and literature surveyed before the project analysis and design phase are described. This chapter indicates finding, summarisation, analysis and synthesis for all the literature being reviewed.

The third chapter is on methodology. Through this chapter the methodology, mechanism, and approach to be adapted is clearly identified. The quality of the proposed tools, which refers to the practicality of the chosen tools, their effectiveness, and appropriateness in solving the problems are being introduced here.

The forth chapter is about requirement capture and analysis, where project and system requirements are captured and analyst for implementation during the design phase.

The fifth chapter, which is the system design, clearly identified and explained the various component of the proposed system. This chapter describes in detail the translation of the system requirements into a representation of the system.

The sixth chapter presents the result of the implementation. This chapter includes details on architectural implementation, system integration, implementation of subsystem and unit testing.

Chapter seven would discusses the software testing and provide description on how to plan, design and implement the testing. Software testing for this system includes integration test and system test. The last part of chapter would provide an evaluation on the test and a usability study of the system.

Chapter eight would interpret on the resulting system. This chapter would discuss on the various problem encountered, the system strengths and system weaknesses, the conclusion and future work. This chapter concludes the project and gives some aspect for future works.

The last chapter of this document are the bibliography and appendices.
Chapter 2 Literature Review

2.1 Introduction

Literature review is an analysis on gathered information about the topic, which in this context, the system which we intend to develops. In order to gauge the state or limitation of existing system, this approach will be use in evaluation of existing system with regards to the topic. And hopefully, the evaluation results would provide basis on factors that could be improves or develops upon. Literature review would also encompass the comparison of software, tools and approaches that could be adopted in order to come out with the best combination that could produce the best outcome. Without this analysis, we would not be able to identity the strength and weaknesses of each and every factor that would have an impact on the effectiveness and efficiency in which this project would flow upon.

Overall, all the information needed for this project was gathered through several ways and methods which include:

- Printed material
- Books, journals and articles
- Internet - Search engines such as Yahoo, Google and MSN are used to look up for information.
- Reviews on existing graphical password authentication systems - Survey was done on some of the graphical password schemes and software to have a better understanding of how graphical password functions and are implemented. In addition, problems or issues faced by existing systems are also noted.

Essentially, the literature review for this project will focus on reviewing of existing graphical password schemes and on the selection of the most appropriate development tools. The chapter would start with a brief overview in section 2.1. Section 2.2 will define what is authentication whereas section 2.3 will explain why password had been chosen in authentication process. Section 2.4 will list out the categories of passwords. Section 2.5 will talk about the aspects in passwords authentication. The reviews of existing graphical passwords scheme will be described in section 2.6. Then section 2.7 presented a summarization of graphical password schemes and software. Whereas section 2.8 provides proposal on the Cued Recall Graphical Password System Resistant to Shoulder Surfing. Finally, a conclusion of this chapter will be presented in section 2.9.
2.2 Authentication

A web-based application is a program that runs on a computer that can be connected via the Internet, where it can be control through use of simple Web interface that a browser (such as Netscape Navigator or Internet Explorer) provides. The interface consists of all of the various objects that a browser can display, such as text, images, text boxes, check boxes, radio buttons, and push buttons. HTML, the underlying language that describes how a web page should appear is somewhat restrictive with regards to exact layout specifications and sizing. However, the very same Web browser can conceivably act as an interface to just about any program that exists.

A Web application usually parallels a program that would normally run on a home computer, known as desktop application. Examples of desktop applications are an e-mail program, scheduling program, spreadsheet or accounting program, word processor, or collaboration tool. The most popular example of a Web-based application would probably be Microsoft’s Hotmail, which is simply a large-scale e-mail program that runs on Microsoft’s server computers.

One of the most argued issues in developing a Web-based application will be on security. In the world of Internet, nothing is 100% secured. Therefore, what we can do is just to decrease the possibility of security being breached. In order to do so, some techniques and protocols were introduced. Including setting up firewall, setting up Secure Socket Layer (SSL) connection, authentication and encryption and so on.

O’Gorman mentioned that ‘a firewall in a network is a node set up as a barrier to prevent traffic crossing from one segment to another’ (O’Gorman et al. 2005, pp. 546) As seen in Figure 2-1, firewalls are used to improve network traffic as well as for security purposes, and may well serve as a barrier between the connected public (left of the firewall) and private (right of the firewall) networks. A firewall may be implemented in a router or it may be a network device specialised for this purpose. It has the following attributes:

- Provides protection at the boundary of a domain.
- Checks data entering or leaving a domain.
- TCP/IP based.
SSL was first developed by Netscape Communication Corporation. It is used for authenticated and encrypted communication between clients and servers on the World Wide Web (WWW). It works by using a private key to encrypt data sent through the SSL connection. Web pages that require an SSL connection starts with “https:” for internet’s address. The SSL protocol is designed to provide privacy between client and server. Second, the protocol is designed to authenticate the server, and optionally the client. (Just 2004)

Authentication is the process to allow users to confirm his or her identity to a Web application. This process usually refers to as login. When the user wants to login to a system, the user enter a username and password to the server and the server will grant access to the user if the provided username and password match the original username and password.

Passwords usually stored in a file or database’s table. The passwords file or passwords field in database are encrypted to secure the system. Encryption will be discuss in section 4.3.6 Cryptography.

2.3 Passwords as Authentication Method

Authentication can be handled in many ways. The importance of selecting an environment appropriate authentication method is the most crucial decision in designing a secure system. User authentication can be handled by one or more authentication methods (Owen et al. 2007). For examples are passwords only, password and token card or biometric such as fingerprints, retina scan or voice recognition. Passwords are the most widely used authentication method (Owen et al. 2007). Passwords can be categorised into textual and non textual passwords. Other authentication methods not widely used because of the highly installation cost or will cause extra cost.
2.4 Passwords Authentication

2.4.1 Textual Passwords

In textual passwords, users provide an identifier, a typed in word or phrase. Common used guideline for textual passwords included (Microsoft Corporation 2009):

- The password should be at least 8 characters long.
- The password should not be easy to relate to the user (e.g., last name, birth date).
- The password should not be a word that can be found in a dictionary or public directory.
- Ideally, the user should combine upper and lower case letters and digits.

Remembering a password was relies on pure recall memory. Textual password authentication is generally simple and does not require much more processing power. However textual password authentication has several vulnerabilities. Among the most obvious are:

- Passwords may easy to guess if the users used dictionary words or write down the password in a highly accessible place.
- Password may hard to remember if the users used some random characters.
- Discovering password by social engineering or eavesdropping.
- Vulnerable to shoulder surfing if the attacker can see the keyboard or “read” the user keystrokes as the user types the password.

Due to this, non textual passwords have been introduced.

2.4.2 Non Textual Passwords (Graphical Passwords)

Alternative authentication method, such as biometrics, has been employed to address the problems with traditional username-password authentication. Our focus in this paper however is the other alternative, which is using pictures as passwords. One reason graphical password schemes is chosen as an alternative to text-based schemes is because human can remember pictures much effortlessly compared to text (Shepard 1967). Pictures are also generally easier to recognize as compared to text plus it is more interesting. Graphical password authentication system refers to a system that uses picture or graphic as password to authenticate a user. Generally, when the user wants to login, the user would need to enter his username and perform some action on the selected picture correctly. Or when the user wants to login, the user would need to select the pre-selected password image among the decoy images. In each round, the user is shown another password image. The user logs in successfully if all challenges are
responded correctly. The advantage of this kind of challenge response system is that it relies on recognition memory. (Norman 1988) Possible drawbacks of such system may include:

- Longer login time if want larger passwords space. This can be achieved by a larger number of decoy images in each round.
- User may be strongly attracted by certain image. User tend to choose the same images for their password and the will reduce the password space.

Graphical passwords have been chosen as this paper research topic because this method does not incur extra cost, but might provide more secure authentication system in the aspects of easy to remember and hard to guess.

2.5 Aspects of Graphical Passwords

2.5.1 Remembrance

Graphical passwords had been proposed as an alternative to the traditional textual passwords. Motivated by the fact that human can remember image better than text. (Shepard 1967) Moreover, image based passwords have shown good memorability in user testing. (Brostoff and Sasse 2000; De Angeli et al. 2002; De Angeli et al. 2005; Dhamija 2000; Dhamija and Perrig 2000; Wiedenbeck et al. 2005c)

The presented graphical passwords system is a challenge response system that used image and text as the passwords. Each password image is associated with text. Users can assign their own text for each image they choose as their password images. The studies of other challenge response system such as Passfaces (Brostoff and Sasse 2000) and Déjà vu (Dhamija and Perrig 2000) suggest that passwords using a challenge response scheme are easy for users to remember over time. Beside that, the presented graphical password system adapted the cued recall method to help increase the user memorability. Cued recall is basically a component of a memory task in which the subject will be asked to recall on items that were presented to them during an initial training or presentation with some hints been given. In the developed system (CRGPS), the first alphabet for each original password to each password image is displayed as a cued or hint to the user in the authentication process. Whereas in the registration process, the user was required to chose their preferred pictures and associated each with their selected word. The purpose of doing this was to provide better recognition from picture to password and vice versa.
2.5.2 Hard to Guess

For some graphical password system that required user to identify the pre-selected pictured to be authenticated. Then if the number of possible pictures is sufficiently large, the possible password space also large. The password spaces of a graphical password scheme may exceed that of textual schemes and thus presumably offer better resistance or hard to guess. For example, a number of faces will be required to form a Passfaces Code. There are five screens in Passfaces from which each user will need to choose one correct face (from a 3 by 3 face grid). In the end, a password containing five characters will be chosen from five 3x3 grids, which provides \(9^5\) combinations (Real User Corporation 2001). Besides that, some graphical passwords system required user to click on several pre-registered locations of a picture in the right sequence. These graphical data represent millions of bytes of information and thus provide large password spaces, such as Blonder’s scheme (Blonder 1996) and Passpoints by Birget, Hong and Memon. (Birget at al. 2003) The passwords space were \(N^K\) where \(N\) is the number of pixels or smallest units of a picture and \(K\) is the number of locations to be clicked on.

A traditional textual password contains \(94^8\) if the length of the password was 8. In the presented research, the password spaces were \(94^{12}\) because there are 94 printable characters excluding SPACE and the length of the password was 12. The bigger length of the password provides better resistance. The length of the password can be adjust in the presented system but need to adjust manually. The presented graphical password system required users enter the second to fourth characters of the original password according to the pictures show on the authentication screen and three characters of a fake password in random order. The purpose to include the fake password was to confuse the observer who stands behind and to make the password hard to guess.

2.5.3 Resistant of Shoulder Surfing

According to Wiedenbeck et al. (2006, pp. 23 - 26):

When users input their passwords in a public place, they may be at risk of attacker stealing their password. An attacker can capture a password by direct observation or by recording the individual’s authentication session. This is referred to as shoulder surfing.

Shoulder-surfing is a well known method of stealing passwords and other sensitive information and is recognised as a serious security threat (Giblin 2005; Wftv.com 2004; Wagstaff 2005). Like textual password, most of the graphical password
systems or schemes were not resistant to shoulder. (Blonder 1996; Jermyn et al. 1999; Thorpe and van Oorschot 2004b; Syukri et al. 1998; Birget et al. 2003; Davis et al. 2004; Dhamija and Perrig 2000; Jansen et al. 2003; Takada and Koike 2003) This was because as the users clicking on the image may make the users’ actions easier to capture. Once a password has been filmed by an attacker, the attacker can surely use the password to login. Only a few of the graphical password schemes resistances to shoulder surfing. (Sobrado and Birget 2002; Man et al. 2003; Hong et al. 2004)

The presented research was resistant to shoulder surfing according to the usability testing. In the registration process, user selects 5 pictures from 5 categories and associated each picture with text to form their passwords. In the authentication process, 3 of the 5 pictures will be randomly chosen from the passwords collection and show on the login screen. The first character of the associated text will be show as hint to the user. The user need to enter the less started from the second character until the fourth character. If the observer standing behind a user or manages to record the login screen with recorded device, the observer may not able to analyse and figure out the passwords due to the system features:

1. The pictures show on the login screen was 50 pictures. Among the 50 only 3 were password images. There are $50^3 = 12500$ combinations of images.

2. The number of attempt to login was limited to 3 attempts only. When the number of attempts exceeds 3, the login page will direct the user to a failure login page. This feature makes the observer more difficult to guess the passwords correctly.

3. If the shoulder surfer fail to login in the first attempt, then the system will keep repeated the same login screen at the second attempt or third attempt to prevent provide additional information about the password.

2.6 Reviews on Existing Graphical Password Technique

Depending on the type of graphical background being used, graphical password schemes can be divided into two categories, which are, the image based scheme and grid based scheme. Image based scheme uses single image or multiple images to construct graphical passwords, whereas grid based scheme uses grid as the background in composing of graphical passwords.

Common problems associated with single image scheme include:
1. The background images have to be sufficiently complex and are capable of providing many memorable points. However, if the image are too complex, such images will be difficult to compress effectively, and more storage and network bandwidth resources will be required to store and reload such image during the authentication process;

2. Difficulty in inputting the password using a keyboard, unless the tab function is being used;

3. Finding small spots in a complex picture will be tedious and this could prove difficult for users with poor vision.

Common problems associated with multiple image based schemes include:

i. Large display space will be required in presentation of multiple images on the screen;

ii. The size of individual image for a group of images would be smaller as the number of images increases, due to limitation in screen area availability.

The proposed Grid based scheme by Jermyn et al. (1999), which is being implemented by using a grid as the background have several advantages:

a. It eliminates the need to store graphics into the database at the server side and removes the overhead in transferring of images through network;

b. It minimise the requirement for quality displays because a grid is a simple object, which does not require extensive amount of resources to run;

c. It does not have a limit on the size of a password, which implies that a user can easily create password with a much longer length. Theoretically, the full password space of a grid-based scheme is infinite;

2.6.1 Graphical Password Scheme by Greg Blonder

The first graphical password scheme was introduced by Greg Blonder (1996). In his scheme, a user is offered with one preset image, which is displayed on screen. The user is then required to select one or more fixed positions, which is recognised as “tap regions” on the displayed image, in a particular order to access the system. This scheme was not resistant to shoulder surfing because as the users clicking on the image may make the users’ actions easier to capture and the attacker can gain the access to the system with the same password. The attacker can get the password with the simplest way by standing behind the user when the user selects the “tap region” on the image. Example of such image is as shown in Figure 2-2. The major flaw of this scheme is that:
The users are not allowed to click randomly on the background.
Only pre-processed pictures can be used.

Figure 2-2 Graphical password scheme suggested by Blonder 1996

2.6.2 Draw - A – Secret (DAS)

Draw – A – Secret (DAS) was suggested by Jermyn et al. (1999). DAS requires a user to draw a secret design on a grid as a way to input a password. The coordinates of the grids occupied by the picture are stored in the order of the drawing. During authentication, the user is asked to re-draw the picture. If the drawing touches the same grids in the same sequence, then the user is authenticated. One major advantage of this scheme is DAS could offer very large password space for reasonable parameters. For example, on a 5×5 grid, the total number of passwords of length 12 or less is 2.3×10^{17}, larger than textual passwords composed of 8 printable ASCII characters which is $95^8 = 6.6 \times 10^{15}$.

Thorpe and van Oorschot (2004a) analysed the memorable password space of the graphical password scheme by Jermyn. They defined a length parameter for the DAS type graphical passwords and showed that DAS passwords of length 8 or larger on a 5 x 5 grid may be less susceptible to dictionary attack than textual passwords. They also showed that the space of mirror symmetric graphical passwords is significantly smaller than the full DAS password space. Thorpe and van Oorschot showed that the size of the space of mirror symmetric passwords of length about $L + 5$ exceeds that of the full password space for corresponding length $L <= 14$ on a 5 x 5 grid. Thorpe and van Oorschot (2004b) further studied the impact of password length and stroke-count as a complexity property of the DAS scheme. Their study showed that stroke-count has the largest impact on the DAS password space. The size of DAS password space decreases significantly with fewer strokes for a fixed password length.

Use of DAS scheme was not resistant to shoulder surfing because when users re-draw the picture on the grid, the users’ actions can be captured by attackers simply by standing behind the user during authentication process.
2.6.3 Grid Selection

To improve the security of Draw-A-Secret technique, Thorpe and van Oorschot (2004b) proposed a “Grid Selection” technique. The selection grid is an initially large, fine grained grid from which the user selects a drawing grid, a rectangular region to zoom in on, in which they may enter their password. This would significantly increase the DAS password space. But this technique also not resistant to shoulder surfing because as the users re-draw the picture on the grid may make the users’ actions easier to capture and the attacker can gain the access to the system with the same password. The attacker can still obtain the password by standing behind the user during authentication process.

2.6.4 Graphical Password Scheme by Syukri et al.

Syukri et al. (1998) propose a system where authentication is conducted by having the user drawing their signature on the screen using a mouse. Their technique included two stages which are registration and verification. During the registration stage: the user will first be asked to draw their signature on the screen with a mouse, and then the system will extract the signature area and either enlarge or scale-down the signature, and rotates if needed, also known as normalizing. The information will later be saved into the database. The verification stage first takes the user input, and does the
normalization again, and then extracts the parameters of the signature. After that, the system conducts verification using geometric average means and a dynamic update of the database. According to the paper the rate of successful verification was satisfying. The biggest advantage of this approach is that there is no need to memorise one’s signature and the signatures are hard to fake. However, not everybody is familiar with using a mouse as a writing device; the signature can therefore be hard to draw. One possible solution to this problem would be to use a pen-like input device. Also, adding of new hardware to the current system can be expensive. We believe such a technique is more useful for small devices such as a PDA, which may already have a stylus. Furthermore, this technique was not resistant to shoulder surfing because the attacker can easily used a video capture device to capture users’ actions and the attacker can gain the access to the system with the same password.

![Figure 2-5 Syukri et al. scheme](image)

Figure 2-5 Syukri et al. scheme
Source: Syukri et al. 1998

2.6.5 Passpoints

Passpoints was introduced by Birget *et al.* (2003). Passpoints allow a user to click on any point inside a background image as an indication of his or her password entry. Through a multi-grid method called “robust discretization”, as long as the user entry are within a predetermined tolerance distance of the originally chosen point, the clicking will be encoded as the same as that for the original. The password will then be stored as a result of a hash function. However, the information about the safe grid, which is one of the three grids referred for each click are not encrypted. If this flaw is being exposed by an attacker, the system will be compromise by the attacker. For this scheme, users could choose any image as their password background such as a scene image, an animal image or their own image. In such cases, the login process would begin with an extra process, in which a bidirectional communication is needed to submit a user id to the server. This process is to initiate transmission of the corresponding user-defined image back to the user after making a search in the database. A user study on
the Passpoints scheme was conducted by Wiedenbeck et al. (2005c). Their study shows that it is easier to create a Passpoints password than an alphanumerical password. Also, their findings show that it will only take 64 seconds on average to create a new Passpoints password, and that only one out of twenty participants had to make two attempts to successfully create a Passpoints password. Alphanumeric passwords, on the other hand, were shown to be harder to create, as it took an average of 81 seconds to successfully create an alphanumeric password. Also, more frequent failed attempts were also observed in the study. However, for the learning process, Passpoints took more trials than the alphanumeric passwords in achieving 10 correct password inputs. The study also observed that graphical passwords took a longer time to input, compared to alphanumeric passwords. The difference was not due to the mechanics of movement and selection, but was due to the time in assessing and locating the correct click region and determining precisely where to click. Passpoints was not resistant to shoulder surfing because the attacker can use a video capture type device to record user’s action or use a Trojan house to capture the mouse movements on the screen and gain the password after analysed.

2.6.6 Story

Story scheme was suggested by Davis et al. (2004), in which the user’s password is a sequence of images selected by the user through storytelling. Story was not resistant to shoulder surfing because as the user is clicking on the image, the users’ actions can be easily captured by the attacker by standing behind the user. Later, the attacker can gain access to the system with the same password. A sample login screen is as shown in Figure 2-7.
2.6.7 Déjà vu

Déjà Vu was designed with non-describable abstract images rather than photographs. (Dhamija and Perrig 2000) An example is as shown in Figure 2-8. This scheme was develop through exploitation of the hash visualization techniques. The login is accomplished in one round where the user simultaneously sees 25 images displayed on the screen, five of which are the user’s password images and the remaining 20 are decoy images. To be authenticated the user must click on all five password images and not click on any of the decoy images. The advantage of using these types of images is that they can be generated through a method called Random Art, which remove the need to store and transmit images back and forth between the client and server. A study conducted showed that it took a longer time period to create a graphical password then a textual password. (Dhamija and Perrig 2000) In addition, 90% of the authentication attempts using Déjà Vu were successful compared to just 70%, using textual passwords. However, the password space of textual passwords is much larger than Déjà Vu. It is also concluded that password generated by Déjà Vu is not much easier to remember than traditional textual passwords. Déjà vu authentication process is not considered resistant to shoulder surfing because of its vulnerability to attackers’ view during the process of clicking the password image. During the process, the attacker can easily view the password images just by standing behind the users.
2.6.8 Picture Password

“Picture password” was suggested by Jansen et al. (2003) In creation of a picture password, a user is required to select a predefined theme, such as ‘seashore’, ‘kitten’ and so on, which consists of thumbnail photos. The user are then required to selects a sequence of thumbnail photos as a password. Sample of login screen is as shown in Figure 2-9. To gain entry to the system, the user would needs to know and identify the thumbnail photos which the users have selected earlier, in the same order as in the registration stage. A numerical value is assigned for each thumbnail photo. Thus, the sequence of selection during registration will actually generate a numerical password to be stored in the database. In one to one mapping, an eight entry image sequence, the number of possible password strings would be only 30^8. The concept of “akin” was introduced, which serves as a shift or alternate key in a traditional keyboard for each thumbnail photo in the theme. For example, instead of picking only one thumbnail photo, a user could select one or two thumbnail photos as one single action. The corresponding alphabet size is then expanded for example from 30 (i.e., singly selected keys) to 930 (i.e., 30 singly selected keys plus 30 x 30 composite keys) if the theme is consists of 30 thumbnail photos. Such expansion drastically enlarge the full password space, and makes brute force highly unlikely to break through. However, the difficulty in remembering a Picture Password will also increased drastically at the same time. This scheme was further enhance through the use of the “Zooming” technique, which magnifies the area of the screen close to the point of cursor in order to facilitate the handling of small objects on display. While “Zooming” does make small thumbnail photos easier to choose, it however also introduces greater complexity in creating and handling themes. “Picture password” has been unsuccessful in repelling shoulder surfing due to the ease of capturing users’ action when clicking on the password image. This is because the attacker can easily monitor the action by standing behind the user during authentication process.
2.6.9 Image-based Authentication

Takada and Koike (2003) introduced image-based authentication for use in mobile phones through use of user-defined images. In the password registration phase, a user can choose his or her images as pass-images. He or She is then required to recognise and identify them among decoy images in the authentication phase as shown in Figure 2-10. The user would need to go through several rounds of verification to ensure the password is secure enough. For each round, the user has to select a pass-image or choose nothing, if no correct pass-image is being displayed. The authentication process will deem to be successful if all verifications are successful. As shown in the studies by Davis et al. (2004) users’ choices of picture passwords are often predictable. Allowing users to use their own pictures would make the password even more predictable, especially if the attacker is familiar with the user. Moreover, the password image can be easily observed by the attacker by standing behind the user when the users are in the midst of clicking on the password images.

![Image-based authentication scheme](source: Takada and Koike 2003)

Figure 2-10 Image-based authentication scheme

2.6.10 Challenge Response Authentication by Sobrado and Birget

The challenge response authentication was introduced by Sobrado and Birget. The principle of this scheme is, if entity B wants to gain access to a system, entity B will need to know of a secret that are only known between the system and B. The shared secret would even establish the way a password mechanism would be constructed for a particular access. Sobrado and Birget presented three techniques for their scheme. For the first technique, the user is presented with a screen that shows a large amount of graphical objects, which are generated and distributed randomly each time they are displayed. With that, the user is to identify the objects that form the password. In this technique, the shared secret between system and the user are the triangle, in which the user must identify to forms the convex hull of the invisible triangle that forms the password.
The second technique requires the user to click at the diagonal intersection point of a set of four points (As shown in Figure 2-12).

And the third example is move a frame to align one object on a mobile frame with others that are fixed on the screen.

These three technique objective is to prevent shoulder surfing from happening (Sobrado and Birget 2002). However, these three techniques can authenticate a user in an insecure location because the users never have to click directly on their password images. The third technique has the advantage that it discloses the least information. There are two disadvantages for this scheme though.

- If the number of graphical objects is large, the user will need to spend a much longer time in searching for objects that form the password. Objects are also more difficult to locate because of the random distribution of objects, which changes every time the user attempt to login. Thus, the scheme employed here
does not need to use as much pictures, and each picture employed are much larger. This will allow the user to search for the picture passwords at a much faster pace.

- If the randomly distributed objects that make up a given password are clustered in a corner of the screen, the convex hull of the triangle will be very small, which makes it easier to guess the password. Thus, the scheme employed here does not use such method.

2.6.11 Challenge Response Authentication by Man et al. (2003)

Man et al. (2003) suggested another shoulder surfing resistant solution. In creation of a password, a user has to choose a number of pass-objects, and has to remember the textual characters that are related to each variant of their pass-objects. During login, the pass-objects, which are randomly generated, are displayed on the screen with about 400 to 500 decoy objects. The user has to input a string of textual characters, in accordance to the order of the pass-objects. The advantage of this scheme is that, even if the process of login is filmed by a video camera, the attacker will not be able to derive the password, as the password is time variant and is different for each login. However, if attackers are able to observe the password entries for a few times, attacker might be able to guess that time was used as the actual password. Thus, the employed scheme does not implement this strategy.

![Figure 2-14 Shoulder surfing solution of Man et al.](image)

Source: Man et al. 2003

2.6.12 Challenge Response Authentication by Hong et al. (2004)

Hong et al. (2004) improves the scheme of Man, Hong and Mathews (2003), which allows users to choose their own words to associate with each pass-object variant. For example, “three” can be used to be associated with a pass-object variant which exhibits a shape similar to the shape of “3”. This option would facilitate the task of
password recall. However, this process would significantly extend the time for password registration. For instance, if each pass-object has five variances and there are eight pass-objects, a user has to make $5 \times 8 = 40$ associations before a password can be created successfully. Moreover, these 40 associations must be remembered by the user. If any of the association is forgotten, the user might not be able to login successfully. Apparently this scheme will substantially increases the difficulty in remembering of a password, and this may discourage users to adopt this password scheme. Thus, CRGPS overcome this weakness by reducing the number of pass-objects to 5 only. Moreover, CRGPS also provided hints for each pass-object in the authentication process.

2.6.13 V-Go

V-GO is commercial authentication software by Passlogix Inc. (2004). V-GO allows a user to create graphical password by navigating through an image, as shown in Figure 2-15. To set or enter a password, a user can click and/or drag on a series of items within that image. For example, with regards to a kitchen image, a user can dip the vegetables in water, take the food from a fridge and put it into the oven, or set a timer on the clock. Other password environment include dialling a phone number, preparing a meal by selecting and cooking ingredients, setting the date and time on a clock, making a stock trade, or choosing a hand of cards. In all, it allows for a sequence of activities being perform as depicted and allow by the image. One major drawback of V-GO is that the full password space is small. For example, in a kitchen image, there are only few places where one can take food from and put into, thus does put some limitation on the choice of V-GO passwords. This vulnerability is highly critical considering the processing power of recent computers. In addition, password chosen by a user can be easily guessable, considering the small availability of password space. For example, a hand of cards chosen by a user can be quite predictable. The chosen card could be same in colour, or in a sequence, because the part on remembering of a hand of random cards would poses the same challenges that befall traditional scheme of passwords, which are people’s memorization capabilities. V-GO was not resistant to shoulder surfing because as the users clicking on/or drag on a series of items within the image may make the users’ actions easier to capture and the attacker can gain the access to the system with the same password. The attacker can get the password with the simplest way by standing behind the user when during authentication process.
2.6.14 visKey

visKey is commercial authentication software by SFR IT Engineering (2005). visKey was designed for operating system of pocket PC such as PDA and Handheld Palm. In this scheme, pictures or visual door called visKey, which are stored in common format such as JPEG, GIF, PNG or BMP, can be chosen by a user as the graphical password background during the password initialization phase. The graphical password consists of one to nine predefined spots, as shown in Figure 2-16. To enter a password correctly, a user has to touch the same sequence of spots as in the registration stage. It is not necessary to, and usually not possible to touch the exact points, as visKey will accept all input within a certain tolerance area around the exact points. The size of this area can be predefined by users. The input precision needs to be set carefully, as it will directly influence the security and usability of the graphical password. If the tolerance area is too big, the password will be relatively easy to crack since there are fewer possible password combinations. If the tolerance area is too small, users might have difficulty to enter a password correctly. For a reasonable setting of parameters, a four-spot visKey can offer theoretically at almost 1 billion (approximately 30 bits) possibilities to define a password, comparable to password space of a five alphanumeric characters ($94^5 = 7.3 \times 10^9$) textual password. This amount of password space, however, is not large enough to resist off-line attacks by a fast computer. Therefore, in order to defend against brute-force attacks, more spots are recommended. visKey was not resistant to shoulder surfing because as the users clicking on the image may make the users’ actions easier to capture and the attacker can gain the access to the system with the same password. The attacker can get the password with the simplest way by standing behind the user when the user identifies the spots on the picture during authentication process.
2.6.15 PassFaces™

PassFaces is a commercial graphical passwords system by Real User Corporation (2001). Passfaces can be thought of as a kind of reverse biometrics. Studies on Passfaces indicate that human have the natural ability to recognise faces long after we have been exposed to them. In short, faces are much easier to “remember” than passwords or PIns. With that in mind, Passfaces Corporation decides to use faces as replacement for passwords, where users are assigned Passfaces much like they are assigned passwords. A number of faces will be required to form a Passfaces Code. There are five screens in Passfaces from which each user will need to choose one correct face (from a 3 by 3 face grid). In the end, a password containing five characters will be chosen from five 3 x 3 grids, which provides \(9^5\) combinations (Real User Corporation 2001). According to a user study, password using Passfaces is easier to remember than alphanumeric passwords (Brostoff and Sasse 2000). However, according to another research, this authentication system was vulnerable to shoulder surfing if a mouse is used in entering of Passfaces passwords. (Tari et al. 2006) The study noted that if keyboard are used in entering of Passfaces password, the difficulty to shoulder surf someone private information will increase tremendously. This is because the shoulder surfer will need to observe the screen pictures and the keyboard at the same time. Another problem with PassFaces is that some of the displayed faces might not be welcome by certain users. In other words, if a user was to choose his/her password, it is likely that he/she will choose faces that he/she likes. An empirical study's result shows that the user’s choice is highly affected by race, gender of the user and the attractiveness of the faces. (Davis et al. 2004)
Figure 2-17 PassFaces™ login window
Source: Real User Corporation 2001
Table 2-1 Summarisation of graphical password schemes or software

<table>
<thead>
<tr>
<th>Name of author or scheme</th>
<th>Resistant to Shoulder Surfing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blonder (Blonder 1996)</td>
<td>No. Because as the users clicking on the image may make the users’ actions easier to capture.</td>
</tr>
<tr>
<td>Draw-A-Secret (DAS) (Jernyn et al. 1999)</td>
<td>No. Because as the users re-draw the picture on the grid may make the users’ actions easier to capture.</td>
</tr>
<tr>
<td>Sykri, Okamoto and Mambo (Sykri et al.1998)</td>
<td>No. Because the attacker can easily use a video capture device to capture users’ actions.</td>
</tr>
<tr>
<td>Passpoints (Birget et al. 2003)</td>
<td>No. Because the attacker can use a video capture type device to record user’s action or used a Trojan house to capture the mouse movements on the screen and gain the password after analysed.</td>
</tr>
<tr>
<td>Dèjà vu (Dhamija and Perrig 2000)</td>
<td>No. Because as the users clicking on the image may make the users’ actions easier to capture.</td>
</tr>
<tr>
<td>Picture Password (Jansen et al. 2003)</td>
<td>No. Because as the users clicking on the image may make the users’ actions easier to capture.</td>
</tr>
<tr>
<td>Image-based Authentication (Takada and Koike 2003)</td>
<td>No. Because as the users clicking on the image may make the users’ actions easier to capture.</td>
</tr>
<tr>
<td>Challenge-response Authentication (Sobrado and Birget 2002), (Man et al. 2003), (Hong et al. 2004)</td>
<td>Yes but have limitations. L1: The registration and authentication process can be tedious and time consuming because many pictures need to be load from the database at the same time. L2: Can be hard to remember when large numbers of objects are involved.</td>
</tr>
<tr>
<td>V-Go (Passlogix Inc 2004)</td>
<td>No. Because as the users clicking on/or drag on a series of items within the image may make the users’ actions easier to capture.</td>
</tr>
<tr>
<td>visKey (SFR IT Engineering 2005)</td>
<td>No. Because as the users clicking on the image may make the users’ actions easier to capture.</td>
</tr>
<tr>
<td>PassFaces™ (Real User Corporation 2001)</td>
<td>No. Because as the users clicking on the image may make the users’ actions easier to capture.</td>
</tr>
<tr>
<td>Cued Recall Graphical Password System Resistant to Shoulder Surfing (CRGPS)</td>
<td>Yes. 1) User do not need to click on the picture instead user enter the password associated with each picture that show on the screen to prevent the attacker record using video camera or standing behind the user to capture the user’s action as the user clicking on the image. 2) User needs to enter the second character until the forth character of the password which make the password difficult to guess although attacker can record using video camera or observe the login process because the password will be different in each login process depending on the password picture that will be show on the screen. 3) The password picture will be select randomly and place randomly with other decoy picture where total 125 pictures will be show on the screen while in the login process to make the system resistant to shoulder surfing. To overcome the previous research’s limitation (L1), CRGPS have the following solutions. S1: Reduce the number of picture to be load from database to 50 pictures each authentication session. S2: Categorised the pictures according to theme such as flower, animal, insect, reptile and bird. To overcome the previous research’s limitation (L2), CRGPS have the following solutions. S3: Reduce the number of picture need to be remembered to 5 pictures only.</td>
</tr>
</tbody>
</table>
2.8 Cued Recall Graphical Password System Resistant to Shoulder Surfing (CRGPS)

In this research, a graphical password system that uses the challenge response authentication method is presented. A system is created in such a way where it will provide a test or a challenge to the user when the user want to login. The user would need to provide the correct answer which was determined at the registration process. A correct response to the system would enable him to log on successfully.

The presented graphical password system is based on Man et al.’s (2003) original idea that overcomes its limitation where users are required to remember the predefined textual character associated with the pass-object. The proposed graphical password system allows users to choose their own words to associate with each pass-object.

This presented graphical password scheme is also based on Hong et al.’s (2004) idea that overcome its limitation where users are required to remember the pass-objects and their variances. For instance, each pass-object has five variances and there are eight pass-objects, a user has to make $5 \times 8 = 40$ associations before a password can be created successfully. The proposed graphical password system reduces the number of pass-objects to be remembered by the users, such that the users would only need to remember five pass-objects and their association’s pass-code.

CRGPS can be carried out in three processes. There was registration process, authentication process and reset process. These three processes were explained in detail below.

1. Registration process

 In the registration process, the user is required to fill in their detail such as username, name, identification number, email address, and so on. The user will be directed to a page where they can create their pass-objects and the pass-objects association pass-code. To create a password, a user has to choose five pass-objects and to create words to associate with each pass-object. The user would need to remember textual characters that are related with each of their pass-objects among the 125 pass-objects, which is categorise in five categories, such as animal, flower, bird, insect and reptile. For example, the user can choose a cat image as his first pass-object and assign 'kitty' as the images pass-code. The user could also assign any number, alphabet or symbol on the keyboard as part of the pass-code. After finishing the selection process, the system would display a review page automatically. The user will need to confirm on the selection of
pass-objects and their association pass-code. This confirmation is done by clicking on the “Confirm” button, which will save the user’s information into the database. If the user want to change the pass-objects and the pass-objects association pass-code, the user could do it in the review page before the user’s information is save into the database. The pass-objects association pass-code will be save into the database in RSA encryption format.

2. Authentication process

In the authentication process, the user is requested for the username. The user is given three chances to enter the username correctly. At third failed log in attempt, user will be force to leave the log in page. If the username is correct then the user is directed to the second page, where 3 pass-objects that are randomly chosen from the user’s pass-objects are displayed on the screen together with another 47 decoy objects from database. The user has to input a string of textual characters for each pass-object shown on the screen and a fake pass-code. The proposed graphical password system will use the cued recall method to help increase the user memorability. The first alphabet for each pass-code to each pass-object is displayed as a cued to the user. The proposed graphical password system will also adopt the fault point method, in which the system would request the user to enter a fake pass-code to confuse the person standing behind who will try to peek over your back in order to obtain private information. The answer required is based on query-directed password’s idea, where the user has to input the second, third and forth characters of each pass-code for each pass-object as the answers to the system. The system will fetch all the user’s pass code from the database and execute decryption process on it and compare the user entered pass-code to the decrypted pass-code from the database. If the comparison matches, then the user is authenticated successfully. All of the three pass-objects association pass-code must match any of the three decrypted pass-code from the database. Username will be disabling out after three failed log in attempts. At third failed log in attempt, user will be force to leave the log in page and an e-mail containing user’s original pass-objects and the pass-objects association pass-codes will be sent to the user’s email using the user’s e-mail address in the user detail.

3. Reset process

In the reset process, the user is required to enter their username to the system. If the username is found in the database then the user is directed to the second page.
In the second page, the user’s detail is displayed. The user can change their personal information in the second page. Then the user is directed to a page to change their pass-objects and the pass-objects association pass-codes. The user can choose a new selection of his 5 pass-objects and their association pass-code for each pass-object from five themes of pictures such as flower, animal, bird, insect and reptile. After the selection, the system will direct the user to the review page where user can confirm the selection or make change to the selection before the user’s data is saved into the database with a click on the Confirm button.

2.9 Conclusion

This chapter has reviewed fifteen type of graphical password authentication scheme. The review of graphical password authentication system has provided an input to the subsequent steps. A new graphical password system had been developed and named Cued Recall Graphical Password System Resistant to Shoulder Surfing (CRGPS). CRGPS was based on Man et al. (2003) original idea and Hong et al.’s (2004) idea that overcomes their limitations which have been mentioned above. According to usability testing, CRGPS was resistant to shoulder surfing. CRGPS implemented three features to counter shoulder surfing. Among the features are:

1. User does not need to click on the picture instead user enter the password associated with each picture that show on the screen to prevent the attacker record using video camera or standing behind the user to capture the user’s action as the user clicking on the image.

2. User needs to enter the second character until the forth character of the password which make the password difficult to guess although attacker can record using video camera or observe the login process because the password will be different in each login process depending on the password picture that will be show on the screen.

3. The password picture will be select randomly and place randomly with other decoy picture where total 125 pictures will be show on the screen while in the login process to make the system resistant to shoulder surfing.
Chapter 3 Methodology

This chapter provides a description of the development approach used for this project. The main section for this chapter is Section 3.1, which describes the approach used. Section 3.2 will provide an outline of the strength of this approach while Section 3.3 would explain the Unified Process and finally Section 3.4 would provide a conclusion of the chapter.

3.1 Software Development Approach Adapted

The software development approach that has been employed for this project is the Unified Software Development Process or in short, the Unified Process. The Unified Process is component-based, which means that the software being built is made up of software components interconnected via well-defined interfaces. Besides that, the Unified Process uses Unified Modelling Language (UML) in preparation of blueprints for the software.

3.2 Suitability of the Proposed Approach

The Unified Software Development Process is the outcome of more than thirty years of experience by Jacobson et al. (1999). The methodology is shaped in a way that has solves the many problems that many software development methods possess.

1. Use case model for requirements capture
 The two main concerns of requirements capture are to find the true requirements and to represent them in a suitable way. Use case model has been the choice of the Unified Process. In a use-case model, there are use cases, which represent a piece of functionality in the system, and actors, which represent the users and any external system that the system interacts with. Use-case model states requirements that are value added to the user. In other words, requirement captures are according to the perspective of each type of user, considering what the system should provides in order for them to do their work. Use cases have been adopted almost universally for capturing the requirements of software systems in general but of component-based system in particular.

2. Use-case driven
 To be use-case driven means that a development process proceeds through a series of workflows that are initiated from the use cases. In other words, they
drive the whole development process. Figure 3-1 illustrates the models of the Unified Process where all the models have dependencies with the use-case model. In other words, use cases are traceable through all the models.

![Figure 3-1 Models of the Unified Process](image)

3. Iterative and incremental

Iterative and incremental development enables developing software in small steps with major and minor milestones which allow the developer to control the development process more effectively. It can be shaped to deal with the development of any kinds of software product due to the flexibility of the iteration workflow. For larger projects, the construction phase could be carried out in more iteration while for complex and green field projects, the inception and elaboration phase could be extended to more iteration to better understand the project before making further steps.

3.3 The Unified Process

The Unified Process is an iterative and incremental life cycle model, which is made up of two distinct types of workflows. They are called the core workflows and the iteration workflows. There are five tasks classified that are as core workflows: requirements, analysis, design, implementation, and test. As for the iteration workflows, there are four phases: inception, elaboration, construction, and transition.

In Unified Process, the development process is performed as iterations. The phases in which the iteration workflows can be carried out in one iteration or divided into more iteration depend very much on the project scope. Figure 3-2 shows the whole cycle, which consists of four phases being divided into more iteration. The five core workflows will performed as shown in Figure 3-3 for all iteration. Hence, all the nine
iterations in Figure 3-2 will sweep through the five core workflows sequentially as shown in Figure 3-4.

Figure 3-2 Phases further divided into more iteration

Figure 3-3 Core workflows in iteration

Figure 3-4 Iterations in action

The iteration has different emphasis in different phases, as illustrated by Figure 3-5. During the inception and elaboration phases, most of the effort is directed toward capturing the requirements, and preliminary analysis and design. During construction, emphasis shifts to detailed design, implementation, and testing. The five core workflows
will be carried as far as required for each iteration. For example, the later workflows, such as implementation and test, might not be used in early inception phase.

Figure 3-5 Emphasis shifts over the iterations, from requirements capture and analysis toward design, implementation, and testing

3.3.1 The Core Workflows

This section will describe the five core workflows from requirements to testing while stating the activities, the input and results of each activity.

1. Requirements

The purpose of requirements workflow is to ensure development toward the right system as specified by user. This workflow has been shaped into two parts, namely requirements capture, and to capture requirement as use cases.

Workflow 1: Requirements Captures

The following have been performed.

- Stakeholders come up with good ideas that might turn into requirements.
 - Suggestion by stakeholders such as used Q&A in the authentication process.
- The context in which the system is set upon is required.
 - CRGPS was an authentication system that can be used as a subsystem to other main system such as accounting system or payroll system.
- Identifying requirements based on use cases in which each use case represents one way of using the software system.
 - A table with each use case with their definition, actor involved, post and pre-condition, and the flow of event was created for each process. Table 3-1 shows the main flow of events in the login process.
Use Case | Description
--- | ---
Login | A USER needs to login before performing any transaction.
Actor/s: USER
Pre-condition: A registered user.

Main flow of events:
1. The USER clicks the LOGIN button on the Home Page.
2. The system displays the Log-in Page.
3. The USER enters his/her username.
4. The USER clicks the NEXT button.
5. The system validates the username information against the DETAIL table in the database.
6. Username exists; the system displays the next page.
7. The system request user to enter his/her password code for the pass objects that appear on the screen.
8. The USER enters his/her password.
9. The USER clicks the NEXT button.
10. The system validates the password code information against the PASSWORD table in the database.
11. USER is an authorised user; the system displays a message “Congratulation!! Login Successfully!!” to the USER.

Post-condition: The USER has been authorised to perform transaction.

| Table 3-1 Use cases and flow of events of Login in CRGPS |

- Identifying non functional requirements.
 - Non functional requirements such as portability, security, scalability and usability were being considered.

Workflow 2: Capturing Requirements as Use Cases

The workflow capturing requirements as use cases consist of five activities: finding actors and use cases prioritise use cases, detailing a use case, prototype user interface, and structuring of use-case model. These five activities and the logical flows are illustrated in Figure 3-6. The path in Figure 3-6 shows the logical sequence of activities using results from the previously performed activity as input.
Activity 1: Finding actors and use cases

All types of system users and all external systems in which the system interacts with are identified. Actors identified from the previous steps are used to identify candidate use cases for each actor. Candidate use cases may also come from customers and users. The candidate use cases are then revised to produce a set of use cases that has an appropriate scope. Each use case is briefly described. The description consists of a few sentences that summarise the actions, and a step-by-step description of what the system need to do when interacting with its actors. Diagrams and description to explain the use-case model as a whole is prepared with emphasis on how the use cases relate to each other and to the actors. Figure 3-7 shows the use cases model of CRGPS.

![CRGPS Diagram](image)

Figure 3-7 Use cases model of CRGPS

Activity 2: Prioritise use cases

The purpose of this activity is to determine which use cases need to be developed in early iterations, and which can be developed in later iterations.

Activity 3: Detail a use cases

The purpose of this activity is to describe the use case’s flow of events in detail, including how it starts, ends, and interacts with actors. An example was show in Table 3-1.

Activity 4: Prototype user interfaces

The purpose of this activity is to build the user interface prototype. This activity will produce a set of user interface sketches and prototypes for the most important actors. This step identified the user interface elements that are needed for users to interact with a use case. The use cases will be evaluated one by one to identify the proper user interface elements for each use case. During this step, sketches of user interface element combined to form the physical user interface. Then, executable
prototypes are built for the important user interface elements. These sketches and prototypes will be validated through user interface review and will work as a specification of the user interface when the real user interface is being constructed. CRGPS user interface design was show in Figure 3-8.

![Figure 3-8 CRGPS user interface design](image)

Activity 5: Structure the use cases model

This activity is to extract general and shared use-case description of functionality that can be used by more specific use-case descriptions, and also to extract additional or optional use-case description of functionality that can extend more specific use-case description. State machine diagram and activity diagram were used in this activity. Figure 3-9 shows one of the state machine diagram and Figure 3-10 shows one of the activity diagrams.

![Figure 3-9 Message state machine diagram](image)
2. Analysis

The purpose of the analysis workflow is to analyse the requirements in order to acquire a more precise understanding of the requirements, and to acquire a description of the requirements that is easy to maintain and helps us in structuring of the whole system. Analysis is the focus during the initial elaboration iterations. It contributes to a sound and stable architecture and facilitates an in-depth understanding of the requirements. Figure 3-11 illustrates the workflow in analysis with the four participating activities. Each activity will be described in a subsection.
Activity 1: Architectural analysis
The purpose of architectural analysis is to outline the analysis model and the architectural. The objective of this activity is achieved by identifying the analysis packages, obvious analysis class, and common special requirements.

Activity 2: Analyse a use case
The purpose of this activity is to identify the analysis classes whose objects are needed to perform the use case’s flow of events, distribute the behaviour of the use case to interacting analysis objects, and capture special requirements on the realization of the use case. This activity is also called use case refinement as we refine each use case as a collaboration of analysis classes. In the identifying analysis classes, the control, entity, and boundary classes needed to realise the use case are identified and their names, responsibilities, attributes, and relationships are outlined. The way that analysis objects interact is described by using communication diagrams that contain the participating actor instances, analysis objects, and their links. Special requirements on a use-case realization are captured. One of the communication diagrams was shows in Figure 3-12.
Activity 3: Analyse a class

The purposes to analyse a class is to identify and maintain the responsibilities of an analysis object, identify and maintain the attributes and relationships of the analysis class, and capture special requirements on the realisation of the analysis class. Hence, it will produce the complete analysis class as output as illustrated in Figure 3-13, while taking the use-case realisation of analysis and the outline of analysis class as input. Responsibilities of the analysis classes are identified in this step. The responsibilities of a class is be collected by examining all the roles that it plays in different use-case realizations. The attributes of the analysis classes will be also identified in this step. Since attributes are often related to realising the responsibilities of its class, the result of the preceding step helps. Associations and aggregations between classes are identified to structure them. Generalizations are used to extract shared and common behaviour among several analysis classes. This further structures the analysis classes. In capturing special requirements, we capture all requirements of an analysis class that are identified in analysis but should be handled in design and implementation. A table with analysis class, responsibilities and attributes are created and show in Table 3-2. A class diagram showing the analysis class of CRGPS also created and show in Figure 3-14.

<table>
<thead>
<tr>
<th>Analysis Class</th>
<th>Responsibilities</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password</td>
<td>-username</td>
<td>-username</td>
</tr>
<tr>
<td></td>
<td>-password image</td>
<td>-password image</td>
</tr>
<tr>
<td></td>
<td>-password code</td>
<td>-password code</td>
</tr>
<tr>
<td>Detail</td>
<td>-username</td>
<td>-username</td>
</tr>
<tr>
<td></td>
<td>-name</td>
<td>-name</td>
</tr>
<tr>
<td></td>
<td>-IC number</td>
<td>-IC number</td>
</tr>
<tr>
<td></td>
<td>-gender</td>
<td>-gender</td>
</tr>
<tr>
<td></td>
<td>-race</td>
<td>-race</td>
</tr>
<tr>
<td></td>
<td>-address</td>
<td>-address</td>
</tr>
<tr>
<td></td>
<td>-state</td>
<td>-state</td>
</tr>
<tr>
<td></td>
<td>-postcode</td>
<td>-postcode</td>
</tr>
<tr>
<td></td>
<td>-country</td>
<td>-country</td>
</tr>
<tr>
<td></td>
<td>-e-mail</td>
<td>-e-mail</td>
</tr>
<tr>
<td></td>
<td>-password image 1</td>
<td>-password image 1</td>
</tr>
<tr>
<td></td>
<td>-password image 2</td>
<td>-password image 2</td>
</tr>
<tr>
<td></td>
<td>-password image 3</td>
<td>-password image 3</td>
</tr>
<tr>
<td></td>
<td>-password image 4</td>
<td>-password image 4</td>
</tr>
<tr>
<td></td>
<td>-password image 5</td>
<td>-password image 5</td>
</tr>
<tr>
<td></td>
<td>-private key</td>
<td>-private key</td>
</tr>
</tbody>
</table>

Figure 3-13 The input and result of activity analyse a class

Table 3-2 Analysis class table
3. Design

The purposes of the design workflow are to:

1. Acquire an in-depth understanding of issues regarding non-functional requirements and constraints.
2. Create an appropriate input to and point of departure for subsequent implementation activities.
3. Be able to decompose implementation work into more manageable pieces.
4. Be able to visualise and reason about the design.
5. Create a seamless abstraction of the system’s implementation.

In the software life cycle (see Figure 3-5), the design is in focus during the end of elaboration and the beginning of construction phase. It contributes to a sound and stable architecture and creates a blueprint for the implementation model.

Activity 1: Architectural design

The purpose of activity architectural design is to outline the design and development models, and their architecture. The resulting interfaces, or other design elements, are then incorporated into the design model. This activity will have the use-case model, analysis model, and architecture description as input to produce an outline of interface, an outline of design class, an outline of deployment model, and the architecture description. In identifying nodes and network configurations, the physical network configuration will be defined. Nodes and network configuration is essential to the software’s architecture. Architecturally significant design classes are identified at this activity to initiate the design work. These architecturally significant design classes could be identified from the architecturally significant analysis classes. Active classes
that are required by the system in order to consider the concurrency requirements should be identified too. In identifying generic design mechanisms, common requirements and special requirements are studied to decide how to handle them with the available design and implementation technologies.

Activity 2: Design a use case

The purposes of this activity are to identify the design classes whose instances are needed to perform the use case’s flow of events, to distribute the behaviour of the use case to interacting design objects, to define requirements on the operations of design classes and their interfaces, and to capture implementation requirements for the use case. This step has the use-case model; analysis model, design model, and deployment model as input to produce the use case realization of design, an outline of design classes, and an outline of interfaces. In identifying the participating design classes, the design classes needed to realise the use case are identified. At describing design object interactions, an outline of the design classes needed to realise the use case is obtained. Sequence diagrams containing the actor instances and design objects are used to describe how these corresponding design objects interact. All requirements are captured on the use-case realisation. One of the sequence diagrams was show in Figure 3-15.
Activity 3: Design a class

The purpose of this activity is to create a design class that fulfils its role in use-case realization and the non-functional requirements that apply to it. Design class for CGPS was show in Figure 3-16. As illustrated in Figure 3-17, this activity will have as input the use-case realization, an outline of design classes, an outline of interface, and the analysis class to produce the design class. The following are eight steps to be taken to perform this activity.

1. Outlining the design class based on the analysis class and/or interface as input. The design classes identified here should be assigned trace dependencies to the corresponding analysis classes.
2. Operations that need to be provided by the design class are identified and described using syntax of the programming language. The operations will need to support all the roles that the class plays in all use-case realizations it participatess.

3. The attributes required by the design class are identified and described using the programming language syntax. Attributes are often implied and required by the operations of the class.

4. Associations and aggregations among design classes are identified in this step.

5. Generalizations are identified. At this stage, generalizations should be used with the same semantics as defined by the programming language.

6. Methods are used to specify how operations are realised.

7. State chart diagrams are used to describe the states of those design objects that are state controlled, which means that the state determines its behaviour.

8. Any requirements that have not been considered in the preceding steps are dealt with in this step.

Figure 3-16 Class diagram of CRGPS
4. Implementation

The purposes of the implementation workflow are to:

1. Plan the system integrations required in each iteration.
2. Distribute the system by mapping executable components onto nodes in the deployment model.
 - A deployment diagram was created as shown in Figure 3-18.

3. Implement the design classes during design.
4. Unit test the components, and then to integrate them.
 Further elaboration will be presented in Chapter 6 Implementation.

5. Test

This is the stage where all the design will be turned into codes. These codes will then be tested separately. Once all the codes have been tested, it is considered that the particular part is complete and free from error. Once all the parts have been tested
successfully, a discussion will be carried out between the system developers and the users to consider if any other functions are required to be added or modified.

Algorithm:

If Yes

Go back to Requirement Capture and Analysis again.

Else

Continue with the next phase – System testing and implementation

After all the “small parts” have been tested separately and were proven to be error free, those small parts will be joined together, one by one in this stage and will be tested again as a whole, complex, and complete system. If everything is running smoothly, the model will proceed to the implementation stage. If any errors do occur, the model will lead to the previous stages. The part where the errors occur will be double checked. Test cases were created in this phase and the result was recorded in a table. Part of the test cases was show in Table 3-3. Usability testing was performing in this phase too and the result was recorded in Chapter 7 Testing.

<table>
<thead>
<tr>
<th>No.</th>
<th>Test case</th>
<th>Expected result</th>
<th>Actual result</th>
<th>Status</th>
<th>After Fix</th>
</tr>
</thead>
</table>
| 1. | Password: The following parameters will be tested out
 a) Min password length of 4 characters
 i) Password length < 4 chars
 ii) Password length > 4 chars
 iii) Password length = 4 chars | - Password not allowed
 - Appropriate message displayed to user
 - Password allowed | - As expected
 - As expected
 - As expected | -OK
 -OK
 -OK | Table 3-3 Test cases of CRGPS
 Further elaboration will be in Chapter 7 Testing.

3.3.2 The Iteration Workflows

This section will describe the four iteration workflows with emphasis of each iteration workflow on the activities in the five core workflows.
1. **Inception iteration**

 The overall intent of the inception phase is to launch the project. Hence, the goal in the inception phase is to come out with the business case as justification for the undertaking of the project. In order to achieve these goals, there are four steps to be taken for this phase, which are:

 (a) The scope of the proposed software has to be delimited. The system boundary should be defined and the interfaces to related systems outside the boundary are identified. The scope is needed to understand what the architecture has to cover, where to look for critical risks, to provide the boundaries on cost, schedule, and on estimates of return-on-investment.

 (b) The candidate architecture of the system has to be described or outlined. The emphases are on those parts that are new, risky, or difficult. This step ends with an architecture description where no executable prototype is required since the goal of this phase is to assure that a stable architecture could be created to support the system scope.

 (c) Critical risks have to be identified. In this phase, the stress in on risks that affect feasibility, meaning risks that threaten the successful development of the system. Other risks are recorded for consideration in later phases. Risks management has been proposed at this early stage to avoid project failure. This is due to the fact that risks discovered at late stages such as system integration and testing might not be mitigated within budget and scheduled time. Prototype can also be used to manage and mitigate risk, as prototype could help in exposing of high risk area.

 (d) Finally, if the product is a new type of software, a demonstration may be performed with a proof-of-concept prototype.

2. **Elaboration iteration**

 The primary product of the elaboration phase is a stable architecture.

 (a) An architectural baseline that covers the architecturally significant functionality of the system is created. This architectural baseline will consist of the model artefacts, architecture description, and executable implementation. Hence, it takes the architecture a step from the inception phase by creating the executable architecture.

 (b) Significant risks, that is, risks that could upset the plans and schedule of later phase, are identified.

 (c) The levels to be attained by quality attributes are specified.
(d) Use cases to about eighty percent of functional requirements are captured. This would be sufficient to plan for the construction phase.
(e) A proposal covering all the resources is prepared.

3. **Construction iteration**

The general objective of this phase is a product with initial operational capability. This phase ends with a product that is ready for beta testing. The general activities of this phase include:
(a) Extending the use-case identification, description, and realization to the entire body of the use cases.
(b) Finishing analysis, design, implementation, and test.
(c) Maintaining the integrity of the architecture.
(d) Monitoring critical and significant risks carried over from the first two phases.

4. **Transition iteration**

This phase typically begins with the beta release. This signifies that the software product is capable of initial operations and is distributed to a representative sample of the community of actual user. The activities of this phase include:
(a) Preparation activities.
(b) Advising the customer on updating the environment in which the software is to operate.
(c) Preparation of manuals and other documentation for product release.
(d) Adjusting the software to operate under the actual parameters of the user environment.
(e) Correcting defects found after feedback from the beta tests.
(f) Modifying the software in the light of unforeseen problems.

3.4 **Conclusion**

This chapter has provides a description of the Unified Software Development Process, the methodology that is being adopted for this project. This chapter also specified the strength of the Unified Process. Among the strength is the efficient use of use case model for requirement capture, the process being use case driven, and the development through use of iteration and incremental model. The detail on the steps carried out in the Unified Process was discussed in this chapter and example of the result was show too.
Chapter 4 Requirement Capture and Analysis

This chapter presents the result of captured requirements, and analysis on the requirements. This chapter consists of four sections where Section 4.1 presents the result of requirements capture. As for the result of analysis, it is presented in Section 4.2 through use-case realization of the analysis model and the analysis classes. Section 4.3 presents the non-functional requirements analysis. The final sections, section 4.4 would conclude the whole chapter.

4.1 Requirements Capture

This section presents the outcome of requirements capture in four subsections. The first subsection provides a description of actors and use cases identified and the flow of events for these use cases. The second subsection provides the user interface design for this application. The third subsection and fourth subsection provides the state machine diagram and activity diagram respectively whereas the fifth subsection provides the non-functional requirements of the CRGPS.

4.1.1 Actor and Use Cases

This subsection specifies the use case model. A use case specifies the behaviour of a system and it is use to capture intended behaviour (functional requirement) of the system that we are developing. Table below shows the graphical notation use in use case diagram and their symbol name.

<table>
<thead>
<tr>
<th>Symbol Name</th>
<th>Notation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor</td>
<td></td>
<td>This symbol represents an actor which interacts with a use case.</td>
</tr>
<tr>
<td>User</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Case</td>
<td></td>
<td>This symbol represents a coherent unit of functionality provided by a system or class.</td>
</tr>
<tr>
<td>Communicates</td>
<td></td>
<td>This symbol indicates the participation of an actor in a use case.</td>
</tr>
<tr>
<td>Include</td>
<td></td>
<td>This symbol indicates that an instance of one use case will also include the behaviour specified by another.</td>
</tr>
</tbody>
</table>

Table 4-1 Use case diagram’s symbol and explanation
Figure 4-1, Figure 4-2 and Figure 4-3 illustrate the structured use-case model of application CRGPS. The user interacts with three use cases: Login, Register and Reset. The table below will give a better view of each use case with their definition, actor involved, post and pre-condition, and the flow of events.

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Description</th>
</tr>
</thead>
</table>
| Login | A USER needs to login before performing any transaction.
Actor/s: USER
Pre-condition:
A registered user.

Main flow of events:
1. The USER clicks the LOGIN button on the Home Page.
2. The system displays the Log-in Page.
3. The USER enters his/her username.
4. The USER clicks the NEXT button.
5. The system validates the username information against the DETAIL table in the database.
6. Username exists; the system displays the next page.
7. The system request user to enter his/her password code for the pass objects that appear on the screen.
8. The USER enters his/her password.
9. The USER clicks the NEXT button.
10. The system validates the password code information against the PASSWORD table in the database.
11. USER is an authorised user; the system displays a message “Congratulation!! Login Successfully!!” to the USER.
Post-condition:
The USER has been authorised to perform transaction.

| Table 4-2 Use cases and flow of events of Login process |
Table 4-2, continued

<table>
<thead>
<tr>
<th>Alternate flow of event:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The USER clicks the LOGIN button on the Home Page.</td>
</tr>
<tr>
<td>2. The system displays the Log-in Page.</td>
</tr>
<tr>
<td>3. The USER enters his/her username.</td>
</tr>
<tr>
<td>4. The USER clicks the NEXT button.</td>
</tr>
<tr>
<td>5. The system validates the username information against the DETAIL table in the database.</td>
</tr>
<tr>
<td>6. USER is not an existing user; the system displays a pop-up message “invalid user” to inform the USER.</td>
</tr>
<tr>
<td>Post-condition:</td>
</tr>
<tr>
<td>The USER is not authorised to perform transaction.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternate flow of event:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The USER clicks the LOGIN button on the Home Page.</td>
</tr>
<tr>
<td>2. The system displays the Log-in Page.</td>
</tr>
<tr>
<td>3. The USER enters his/her username.</td>
</tr>
<tr>
<td>4. The USER presses the CANCEL button.</td>
</tr>
<tr>
<td>5. The system stops the transaction.</td>
</tr>
<tr>
<td>Post-condition:</td>
</tr>
<tr>
<td>No changes are made to the USER account.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternate flow of event:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The USER clicks the LOGIN button on the Home Page.</td>
</tr>
<tr>
<td>2. The system displays the Log-in Page.</td>
</tr>
<tr>
<td>3. The USER enters his/her username.</td>
</tr>
<tr>
<td>4. The USER presses the CLEAR button.</td>
</tr>
<tr>
<td>5. The USER re-enter his/her username.</td>
</tr>
<tr>
<td>6. The USER clicks the NEXT button.</td>
</tr>
<tr>
<td>7. The system validates the username information against the DETAIL table in the database.</td>
</tr>
<tr>
<td>8. USER is an existing user; the system displays the next page.</td>
</tr>
<tr>
<td>9. The system request user enters his/her password code for the pass objects that appear on the screen.</td>
</tr>
<tr>
<td>10. The USER enters his/her password.</td>
</tr>
<tr>
<td>11. The USER clicks the NEXT button.</td>
</tr>
<tr>
<td>12. The system validates the password code information against the PASSWORD table in the database.</td>
</tr>
<tr>
<td>13. USER is an authorised user; the system displays a message “Congratulations!! Login Successfully!!” to the USER.</td>
</tr>
<tr>
<td>Post-condition:</td>
</tr>
<tr>
<td>The USER is authorised to perform the transaction.</td>
</tr>
</tbody>
</table>
Alternate flow of event:
1. The USER clicks the LOGIN button on the Home Page.
2. The system displays the Log-in Page.
3. The USER enters his/her username.
4. The USER clicks the NEXT button.
5. The system validates the username information against the DETAIL table in the database.
6. USER is an existing user; the system displays the next page.
7. The system request user enters his/her password code for the pass objects that appear on the screen.
8. The USER enters his/her password.
9. The USER clicks the NEXT button.
10. The system validates the password code information against the PASSWORD table in the database.
11. The USER is not an authorised user; the system displays a message “Wrong password!! Please try again!! Your email has been successfully sent!” to the USER.
12. The system sent an email contains password information to the USER.

Post-condition:
The USER is not authorised to perform transaction.

Alternate flow of event:
1. The USER clicks the LOGIN button on the Home Page.
2. The system displays the Login Page.
3. The USER enters his/her username.
4. The USER clicks the NEXT button.
5. The system validates the username information against the DETAIL table in the database.
6. USER is an existing user; the system displays the next page.
7. The system request user enters his/her password code for the pass objects that appear on the screen.
8. The USER clicks the NEXT button.
9. The system displays a message “Required” to the USER require USER to enter his/her password.
8. The USER re-enters his/her password.
9. The USER clicks the NEXT button.
10. The system validates the password code information against the PASSWORD table in the database.
11. USER is an authorised user; the system displays a message “Congratulation!! Login Successfully!!” to the USER.

Post-condition:
The USER has been authorised to perform transaction.
Use Case	**Description**
Register | A new USER needs to be register into the system before performing any transaction.
Actor/s: USER
Pre-condition: An unregistered USER.

Main flow of events:
1. The USER clicks the REGISTER button on the Home Page.
2. The system displays the Register Page.
3. The USER enters all of the required information.
4. The USER clicks the NEXT button.
5. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).
6. The system shows the selected image at the image box below.
7. The USER enters password code for the chosen image.
8. The USER click on the SUBMIT button to confirm the selection.
9. Step 5 until step 8 repeat 5 times.
10. The system shows the result for review.
11. The USER clicks the CONFIRM button.
12. The system updates account information in the DETAIL and PASSWORD tables in the database.
13. The system returns the USER to the Log-in Page.
Post-condition:
The new USER has registered. The DETAIL and PASSWORD tables are updated.

Alternate flow of event:
1. The USER clicks the REGISTER button on the Home Page.
2. The system displays the Register Page.
3. The USER skip in filling in the compulsory field, then a message “Required will appear after the skipped field’s textbox.
4. The USER fills in the compulsory field.
5. The USER clicks the NEXT button.
6. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).
7. The system shows the selected image at the image box below.
8. The USER enters password code for the chosen image.
9. The USER click on the SUBMIT button to confirm the selection.
10. Step 6 until step 9 repeat 5 times.
11. The system shows the result for review.
12. The USER clicks the CONFIRM button.
13. The system updates account information in the DETAIL and PASSWORD tables in the database.
14. The system returns the USER to the Log-in Page.
Post-condition:
The new USER has registered. The DETAIL and PASSWORD tables are updated.

| Table 4-3 Use cases and flow of events of Register process |
Table 4-3, continued

<table>
<thead>
<tr>
<th>Alternate flow of event:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The USER clicks the REGISTER button on the Home Page.</td>
</tr>
<tr>
<td>2. The system displays the Register Page.</td>
</tr>
<tr>
<td>3. The USER enters all of the required information.</td>
</tr>
<tr>
<td>4. The USER fill in the IC No. and E-mail address field in wrong format, a message that shows the correct format will appear.</td>
</tr>
<tr>
<td>5. The USER re-enter the information in a correct format.</td>
</tr>
<tr>
<td>6. The USER clicks the NEXT button.</td>
</tr>
<tr>
<td>7. The USER choose an image from 5 categories (animal, insect, flower, reptile, bird).</td>
</tr>
<tr>
<td>8. The system shows the selected image at the image box below.</td>
</tr>
<tr>
<td>9. The USER enters password code for the chosen image.</td>
</tr>
<tr>
<td>10. The USER click on the SUBMIT button to confirm the selection.</td>
</tr>
<tr>
<td>11. Step 7 until step 10 repeat 5 times.</td>
</tr>
<tr>
<td>12. The system shows the result for review.</td>
</tr>
<tr>
<td>13. The USER clicks the CONFIRM button.</td>
</tr>
<tr>
<td>14. The system updates account information in the DETAIL and PASSWORD tables in the database.</td>
</tr>
<tr>
<td>15. The system returns the USER to the Log-in Page.</td>
</tr>
</tbody>
</table>

Post-condition:
The new USER has registered. The DETAIL and PASSWORD tables are updated.

<table>
<thead>
<tr>
<th>Alternate flow of event:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The USER clicks the REGISTER button on the Home Page.</td>
</tr>
<tr>
<td>2. The system displays the Register Page.</td>
</tr>
<tr>
<td>3. The USER enters all of the required information.</td>
</tr>
<tr>
<td>4. The USER chooses a Username that already owned by other person, a message “invalid username” will appear and request the USER to enter a new UserName to register.</td>
</tr>
<tr>
<td>5. The USER re-enter a new Username.</td>
</tr>
<tr>
<td>6. The USER clicks the NEXT button.</td>
</tr>
<tr>
<td>7. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).</td>
</tr>
<tr>
<td>8. The system shows the selected image at the image box below.</td>
</tr>
<tr>
<td>9. The USER enters password code for the chosen image.</td>
</tr>
<tr>
<td>10. The USER click on the SUBMIT button to confirm the selection.</td>
</tr>
<tr>
<td>11. Step 7 until step 10 repeat 5 times.</td>
</tr>
<tr>
<td>12. The system shows the result for review.</td>
</tr>
<tr>
<td>13. The USER clicks the CONFIRM button.</td>
</tr>
<tr>
<td>14. The system updates account information in the DETAIL and PASSWORD tables in the database.</td>
</tr>
<tr>
<td>15. The system returns the USER to the Log-in Page.</td>
</tr>
</tbody>
</table>

Post-condition:
The new USER has registered. The DETAIL and PASSWORD tables are updated.
Alternate flow of event:

1. The USER clicks the REGISTER button on the Home Page.
2. The system displays the Register Page.
3. The USER enters all of the required information.
4. The USER clicks the NEXT button.
5. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).
6. The system shows the selected image at the image box below.
7. The USER enters password code for the chosen image.
8. The USER click on the SUBMIT button to confirm the selection.
9. The USER chooses the same image again.
10. The system prompts a message “Image already chosen!! Please choose another image!!”
11. The USER chooses a new image.
12. The system shows the selected image at the image box below.
13. The USER enters password code for the chosen image.
14. The USER click on the SUBMIT button to confirm the selection.
15. Step 5 until step 8 repeat 5 times.
16. The system shows the result for review.
17. The USER clicks the CONFIRM button.
18. The system updates account information in the DETAIL and PASSWORD tables in the database.
19. The system returns the USER to the Log-in Page.

Post-condition:
The new USER has registered. The DETAIL and PASSWORD tables are updated.

Alternate flow of event:

1. The USER clicks the REGISTER button on the Home Page.
2. The system displays the Register Page.
3. The USER enters all of the required information.
4. The USER clicks the NEXT button.
5. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).
6. The system shows the selected image at the image box below.
7. The USER clicks the SUBMIT button.
8. The system prompts a message “Required”.
9. The USER re-enter the password code for the chosen image.
10. The USER click on the SUBMIT button to confirm the selection.
11. Step 5 until step 8 in the main flow of event repeat 5 times.
12. The system shows the result for review.
13. The USER clicks the CONFIRM button.
14. The system updates account information in the DETAIL and PASSWORD tables in the database.
15. The system returns the USER to the Log-in Page.

Post-condition:
The new USER has registered. The DETAIL and PASSWORD tables are updated.
Alternate flow of event:
1. The USER clicks the REGISTER button on the Home Page.
2. The system displays the Register Page.
3. The USER enters all of the required information.
4. The USER clicks the NEXT button.
5. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).
6. The system shows the selected image at the image box below.
7. The USER enters password code for the chosen image.
8. The USER click on the SUBMIT button to confirm the selection.
9. Step 5 until step 8 repeat 5 times.
10. The system shows the result for review.
11. The USER clicks the CHANGE PICTURE button.
12. Step 5 until step 8 repeat.
13. The system shows the result for review.
14. The USER clicks the CONFIRM button.
15. The system updates account information in the DETAIL and PASSWORD tables in the database.
16. The system returns the USER to the Log-in Page.

Post-condition:
The new USER has registered. The DETAIL and PASSWORD tables are updated.

Alternate flow of event:
1. The USER clicks the REGISTER button on the Home Page.
2. The system displays the Register Page.
3. The USER enters all of the required information.
4. The USER clicks the NEXT button.
5. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).
6. The system shows the selected image at the image box below.
7. The USER enters password code for the chosen image.
8. The USER click on the SUBMIT button to confirm the selection.
9. Step 5 until step 8 repeat 5 times.
10. The system shows the result for review.
11. The USER changes the password code for the selected images.
12. The USER clicks the CONFIRM button.
13. The system updates account information in the DETAIL and PASSWORD tables in the database.
14. The system returns the USER to the Log-in Page.

Post-condition:
The new USER has registered. The DETAIL and PASSWORD tables are updated.
<table>
<thead>
<tr>
<th>Use Case</th>
<th>Description</th>
</tr>
</thead>
</table>
| Reset | A USER wants to change his/her personal information.
Actor/s: USER
Pre-condition:
A registered user.

Main flow of events:
1. The USER clicks the RESET button on the Home Page.
2. The system displays the Reset Page.
3. The USER enters his/her username.
4. The USER clicks the NEXT button.
5. The system validates the username information against the DETAIL table in the database.
6. The USER is an existing user; the system displays USER’s detail.
7. The USER change personal detail.
8. The USER clicks the NEXT button.
9. The system displays USER’s detail and password information for review.
10. The USER clicks the CHANGE PICTURE button.
11. The system displays password image for USER to choose.
12. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).
13. The system shows the selected image at the image box below.
14. The USER enters password code for the chosen image.
15. The USER click on the SUBMIT button to confirm the selection.
16. The system shows the result for review.
17. Step 10 until step 16 repeat for each time USER clicks on the CHANGE PICTURE button.
18. The USER clicks the CONFIRM button.
19. The system updates account information in the DETAIL and PASSWORD tables in the database.
20. The system returns the USER to the Login Page.

Post-condition:
The DETAIL and PASSWORD tables are updated.

Alternate flow of event:
1. The USER clicks the RESET button on the Home Page.
2. The system displays the Reset Page.
3. The USER enters his/her username.
4. The USER clicks the NEXT button.
5. The system validates the username information against the DETAIL table in the database.
6. USER is not an existing user; the system displays a pop-up message “invalid user” to inform the USER.

Post-condition:
The USER is not authorised to perform transaction.

| Table 4-4 Use cases and flow of events of Reset process |
Alternate flow of event:

1. The USER clicks the RESET button on the Home Page.
2. The system displays the Reset Page.
3. The USER enters his/her username.
4. The USER clicks the NEXT button.
5. The system validates the username information against the DETAIL table in the database.
6. The USER is an existing user; the system displays USER’s detail.
7. The USER change personal detail.
8. The USER skip to fill in the compulsory field, then a message “Required will appear after the skipped field’s textbox.
9. The USER fills in the compulsory field.
10. The USER clicks the NEXT button.
11. The system displays USER’s detail and password information for review.
12. The USER clicks the CHANGE PICTURE button.
13. The system displays password image for USER to choose.
14. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).
15. The system shows the selected image at the image box below.
16. The USER enters password code for the chosen image.
17. The USER click on the SUBMIT button to confirm the selection.
18. The system shows the result for review.
19. Step 12 until step 18 repeat for each time USER clicks on the CHANGE PICTURE button.
20. The USER clicks the CONFIRM button.
21. The system updates account information in the DETAIL and PASSWORD tables in the database.
20. The system returns the USER to the Login Page.

Post-condition:

The DETAIL and PASSWORD tables are updated.
Table 4-4, continued

<table>
<thead>
<tr>
<th>Alternate flow of event:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The USER clicks the RESET button on the Home Page.</td>
</tr>
<tr>
<td>2. The system displays the Reset Page.</td>
</tr>
<tr>
<td>3. The USER enters his/her username.</td>
</tr>
<tr>
<td>4. The USER clicks the NEXT button.</td>
</tr>
<tr>
<td>5. The system validates the username information against the DETAIL table in the database.</td>
</tr>
<tr>
<td>6. The USER is an existing user; the system displays USER’s detail.</td>
</tr>
<tr>
<td>7. The USER change personal detail.</td>
</tr>
<tr>
<td>8. The USER fill in the IC No. and E-mail address field in wrong format, a message that shows the correct format will appear.</td>
</tr>
<tr>
<td>9. The USER re-enter the information in a correct format.</td>
</tr>
<tr>
<td>10. The USER clicks the NEXT button.</td>
</tr>
<tr>
<td>11. The system displays USER’s detail and password information for review.</td>
</tr>
<tr>
<td>12. The USER clicks the CHANGE PICTURE button.</td>
</tr>
<tr>
<td>13. The system displays password image for USER to choose.</td>
</tr>
<tr>
<td>14. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).</td>
</tr>
<tr>
<td>15. The system shows the selected image at the image box below.</td>
</tr>
<tr>
<td>16. The USER enters password code for the chosen image.</td>
</tr>
<tr>
<td>17. The USER click on the SUBMIT button to confirm the selection.</td>
</tr>
<tr>
<td>18. The system shows the result for review.</td>
</tr>
<tr>
<td>19. Step 12 until step 18 repeat for each time USER clicks on the CHANGE PICTURE button.</td>
</tr>
<tr>
<td>20. The USER clicks the CONFIRM button.</td>
</tr>
<tr>
<td>21. The system updates account information in the DETAIL and PASSWORD tables in the database.</td>
</tr>
<tr>
<td>22. The system returns the USER to the Login Page.</td>
</tr>
</tbody>
</table>

Post-condition:
The DETAIL and PASSWORD tables are updated.
Alternate flow of event:
1. The USER clicks the RESET button on the Home Page.
2. The system displays the Reset Page.
3. The USER enters his/her username.
4. The USER clicks the NEXT button.
5. The system validates the username information against the DETAIL table in the database.
6. The USER is an existing user; the system displays USER’s detail.
7. The USER change personal detail.
8. The USER clicks the NEXT button.
9. The system validates the username information against the DETAIL table in the database.
10. The USER chooses a Username that already owned by other person, a message “invalid username” will appear and request the USER to enter a new Username to register.
11. The USER re-enter a new Username.
12. The USER clicks the NEXT button.
13. The system displays USER’s detail and password information for review.
14. The USER clicks the CHANGE PICTURE button.
15. The system displays password image for USER to choose.
16. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).
17. The system shows the selected image at the image box below.
18. The USER enters password code for the chosen image.
19. The USER click on the SUBMIT button to confirm the selection.
20. The system shows the result for review.
21. Step 14 until step 20 repeat for each time USER clicks on the CHANGE PICTURE button.
22. The USER clicks the CONFIRM button.
23. The system updates account information in the DETAIL and PASSWORD tables in the database.
24. The system returns the USER to the Login Page.

Post-condition:
The DETAIL and PASSWORD tables are updated.
Alternate flow of event:

1. The USER clicks the RESET button on the Home Page.
2. The system displays the Reset Page.
3. The USER enters his/her username.
4. The USER clicks the NEXT button.
5. The system validates the username information against the DETAIL table in the database.
6. The USER is an existing user; the system displays USER’s detail.
7. The USER change personal detail.
8. The USER clicks the NEXT button.
9. The system displays USER’s detail and password information for review.
10. The USER clicks the CHANGE PICTURE button.
11. The system displays password image for USER to choose.
12. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).
13. The system shows the selected image at the image box below.
14. The USER enters password code for the chosen image.
15. The USER click on the SUBMIT button to confirm the selection.
16. The system shows the result for review.
17. Step 10 until step 15 repeat.
18. The USER chooses the same image again.
19. The system prompts a message “Image already chosen!! Please choose another image!!”
20. The USER chooses a new image.
21. The system shows the selected image at the image box below.
22. The USER enters password code for the chosen image.
23. The USER click on the SUBMIT button to confirm the selection.
24. Step 10 until step 16 repeat 3 times.
25. The system shows the result for review.
26. The USER clicks the CONFIRM button.
27. The system updates account information in the DETAIL and PASSWORD tables in the database.
28. The system returns the USER to the Login Page.

Post-condition:
The DETAIL and PASSWORD tables are updated.
Alternate flow of event:

1. The USER clicks the RESET button on the Home Page.
2. The system displays the Reset Page.
3. The USER enters his/her username.
4. The USER clicks the NEXT button.
5. The system validates the username information against the DETAIL table in the database.
6. The USER is an existing user; the system displays USER’s detail.
7. The USER change personal detail.
8. The USER clicks the NEXT button.
9. The system displays USER’s detail and password information for review.
10. The USER clicks the CHANGE PICTURE button.
11. The system displays password image for USER to choose.
12. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).
13. The system shows the selected image at the image box below.
14. The USER click on the SUBMIT button to confirm the selection.
15. The system prompts a message “Required”.
16. The USER re-enter the password code for the chosen image.
17. The USER click on the SUBMIT button to confirm the selection.
18. The system shows the result for review.
19. Step 10 until step 16 repeat for each time USER clicks on the CHANGE PICTURE button.
20. The USER clicks the CONFIRM button.
21. The system updates account information in the DETAIL and PASSWORD tables in the database.
22. The system returns the USER to the Login Page.

Post-condition:
The DETAIL and PASSWORD tables are updated.
Table 4-4, continued

<table>
<thead>
<tr>
<th>Alternate flow of event:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The USER clicks the RESET button on the Home Page.</td>
</tr>
<tr>
<td>2. The system displays the Reset Page.</td>
</tr>
<tr>
<td>3. The USER enters his/her username.</td>
</tr>
<tr>
<td>4. The USER clicks the NEXT button.</td>
</tr>
<tr>
<td>5. The system validates the username information against the DETAIL table in the database.</td>
</tr>
<tr>
<td>6. The USER is an existing user; the system displays USER’s detail.</td>
</tr>
<tr>
<td>7. The USER change personal detail.</td>
</tr>
<tr>
<td>8. The USER clicks the NEXT button.</td>
</tr>
<tr>
<td>9. The system displays USER’s detail and password information for review.</td>
</tr>
<tr>
<td>10. The USER clicks the CHANGE PICTURE button.</td>
</tr>
<tr>
<td>11. The system displays password image for USER to choose.</td>
</tr>
<tr>
<td>12. The USER chooses an image from 5 categories (animal, insect, flower, reptile, bird).</td>
</tr>
<tr>
<td>13. The system shows the selected image at the image box below.</td>
</tr>
<tr>
<td>14. The USER enters password code for the chosen image.</td>
</tr>
<tr>
<td>15. The USER click on the SUBMIT button to confirm the selection.</td>
</tr>
<tr>
<td>16. The system shows the result for review.</td>
</tr>
<tr>
<td>17. Step 10 until step 16 repeat for each time USER clicks on the CHANGE PICTURE button.</td>
</tr>
<tr>
<td>18. The USER changes the password code for the selected images.</td>
</tr>
<tr>
<td>19. The USER clicks the CONFIRM button.</td>
</tr>
<tr>
<td>20. The system updates account information in the DETAIL and PASSWORD tables in the database.</td>
</tr>
<tr>
<td>21. The system returns the USER to the Login Page.</td>
</tr>
</tbody>
</table>

Post-condition:
The DETAIL and PASSWORD tables are updated.

4.1.2 Non-functional Requirements Analysis

There are eight major key areas of non-functional requirements and they are listed as below:

a. Portability

Portability refers to the capability of the system to operate on various platforms regardless of manufacturer or operating system. Since the selected server side language, which is ASP.NET, is available in most popular platforms, especially Windows, CRGPS portability will be assured. Secondly, since the output of ASP.NET is based on international standards, all users using browsers that implement these standards will have no problems in accessing to CRGPS.

b. Security

Security refers to the ability of systems to be immune and protected from any criminal attacks such as hacking, malicious codes attack and in this case, shoulder surfing. Every request to edit user details, such as resetting of password and changing of
user detail, will require users’ identity to be authenticated before changes are allowed. RSA encryption algorithm is also adopted to enhance protection of password codes.

c. Scalability

Scalability refers to the potential of the system to be enhanced, depending upon the need and without much change of the underlying components. As CRGPS is a Web-based and modular-based system, it can be easily implemented on most of the machines as long as the lowest requirements of software and hardware are fulfilled. Furthermore, database scalability issues can be resolved through use of distributed database architecture whereas Web application upgrades can be addressed through increase of bandwidth or by adding additional Web server.

d. Flexibility

Flexibility refers to the system’s ability to adopt new technologies and resources, as well as implementation to dynamic environments. As CRGPS is based on Web technologies, it is foreseeable that future Web technologies that can work with existing web technologies will have no problem in implementation of CRGPS.

e. Usability

Usability refers to user friendliness of a system. CRGPS is developed to be user centric and consistent in its user interface. Beside this, cued recall and query-directed password method was adopted to make the system more memorable.

f. Reliability

Reliability refers to the ability to rate the failure occurrence of the system. CRGPS will run on Windows XP with Microsoft Internet Information Server (IIS) service, which is known to be very reliable, and widely use. Thus, the reliability of CRGPS is ensured as long as the Internet connection is good and the machine running the system is stable and reliable. The system should operate 24 hours a day, 7 days a week, and has a guarantee uptime of 99% for its service. A maximum 4 hours downtime is permitted for maintenance purpose.

f. Efficiency

Efficiency refers to the ability of systems to process user requests as much as possible at the least response time. Besides, space usage of on hard disk and memory is also important but is of secondary concern. A major concern is the spaces that are being used database storage. This very much depends on the systems installed and the number of records that are added to the database.

h. User-friendliness

The system must provide step-by-step guidance on usage of the system.
4.1.3 User Interface

This subsection specifies the user interface design of the use cases. A design of CRGPS user interface is shown in Figure 4-2. This user interface design uses User as the actor.

![Figure 4-2 CRGPS user interface design](image)

There are four boundary objects in CRGPS, which uses the Home Page as the front page during user initial access to the system. There would be another three menus provided through the Home Page, which leads to other boundary objects. These are the Register Page, Login Page and Reset Page. User can click “Register” to create a new account. User can also login to the system via the Login Page or click Reset to change the user’s detail.

4.1.4 State Machine Diagram

CRGPS has three state machine diagrams that represent three objects, which are Message, Detail and Password. Table 4-5 shows the symbol and explanation of the state machine diagram.

<table>
<thead>
<tr>
<th>Symbol Name</th>
<th>Notation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td></td>
<td>This symbol represents a condition in which an object satisfies some condition, performs some action or is waiting for an event.</td>
</tr>
<tr>
<td>Initial State</td>
<td></td>
<td>This symbol represents the point at which a newly created object starts.</td>
</tr>
<tr>
<td>Final State</td>
<td></td>
<td>This symbol represents the final occurrence of an event at the enclosing state.</td>
</tr>
<tr>
<td>Transition</td>
<td></td>
<td>This symbol represents a transition from one state to another.</td>
</tr>
</tbody>
</table>

Table 4-5 State machine diagram’s symbol and explanation

Message State Machine Diagram

Message has two different states, which are Generated, which means that message are generated and Displayed means that message has been displayed.
Password State Machine Diagram

Account is an object that has two different states, which is Wait and it means that the system is idle, and New Record Created means that a new record is being created upon registration.

Detail State Machine Diagram

Detail is an object that has two different states, which are Wait. This means that the system is idle. New Record Created means a new record is being created upon registration.

4.1.5 Activity Diagram

This section will show you the activity diagram for each use cases. Table 4.4 shows the symbol and provides explanation on the activity diagram. In our activity diagram, we use one or more swim lanes that represent the actor, who is responsible for the specified action.

<table>
<thead>
<tr>
<th>Symbol Name</th>
<th>Notation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action State</td>
<td></td>
<td>This symbol represents an action state whose purpose is to execute an action that allows transition to another state.</td>
</tr>
<tr>
<td>Control Flow</td>
<td></td>
<td>This symbol represents a transition from a state to another state</td>
</tr>
<tr>
<td>Decision</td>
<td></td>
<td>This symbol expresses a decision when guard conditions are used to indicate the possibilities that are Boolean dependent.</td>
</tr>
</tbody>
</table>

Table 4-6 Activity diagram’s symbol and explanation
Login activity diagram was created to show the activity being carried out in the Login use case. The actor represents by the Customer and the system (CRGPS) represent by the Website. When the Customer want to login, he/she go to the system home page. The Customer clicks on the LOGIN button and the system will display login page. The system will request the Customer enter username and the Customer need to enter a valid username and click on NEXT button. The system will verify the username. If the username is valid then the system will request Customer to enter password. The Customer needs to enter a correct password and click on NEXT button.
The system will verify the password. If the password tally with database’s data then the system will display successful login page else the system will sent an email that contain Customer’s original password to Customer.

Register Activity Diagram

![Register Activity Diagram](image)

Figure 4-7 Register activity diagram

Register activity diagram was created to show the activity being carried out in the Register use case. The actor represents by the Customer and the system represent by the Website. When a new user wants to register, he/she go to the system home page. The user clicks on the REGISTER button and the system will display register page. The
system will request the Customer to fill in the registration form and the Customer need to fill in all the compulsory fields. The system will check whether the Customer has entered information in the compulsory fields and whether the information is in its correct format. If everything is correct then the system will verify the username. If the username is accepted then the Customer can create his/her own password. After finish creating the password the Customer click on SUBMIT button. The system will display the selected password and username in a review page. The Customer can review the information and do any necessary changes if needed and click on the CONFIRM button to confirm everything is correct. Then the system will display the login page to the Customer and create the Customer’s password and also add in the Customer detail in database.
Reset Activity Diagram

Reset activity diagram was created to show the activity being carried out in the Reset use case. The actor represents by the Customer and the system represent by the Website. When the Customer wants to reset the password, he/she go to the system home page and clicks on the RESET button. The system will display reset page and request...
the Customer to enter username. The Customer needs to enter a valid username and click on the NEXT button. The system will verify the username. If the username is correct, then the system will display the Customer detail and the Customer can alter the information. After the Customer make the changes, the system will check whether the compulsory fields had been fill in and whether the information is in its correct format. If everything is OK then the system will display the Customer's password in a review page. The Customer can change the password image with clicking on the CHANGE PICTURE button or click on the CONFIRM button to confirm. The system will display the login page and save the information in database.

4.2 Analysis

This section would describe the result of analysis. It is divided into two subsections. The first subsection describes the use-case realisation of analysis model while the second subsection specifies the analysis classes.

4.2.1 Use Case Realisation - Analysis

This section shows each use case realization of analysis. Communication diagrams are used to describe the communication between analysis objects. Communication diagram is an interaction diagram that emphasises the structural organization of the objects that participate in an interaction. Table 4-7 shows the symbol and the explanation of communication diagram. CRGPS have three communication diagrams. They are Login, Register and Reset diagrams. Every communication diagram will have a flow of event to further describe the diagram.

<table>
<thead>
<tr>
<th>Symbol Name</th>
<th>Notation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary Object</td>
<td></td>
<td>This symbol represents the existence of a boundary object.</td>
</tr>
<tr>
<td>Entity Object</td>
<td></td>
<td>This symbol represents the existence of an entity object.</td>
</tr>
<tr>
<td>Path</td>
<td></td>
<td>This symbol represents a path how one object is linked to another.</td>
</tr>
<tr>
<td>Path Direction</td>
<td></td>
<td>This symbol represents a path direction.</td>
</tr>
</tbody>
</table>

Table 4-7 Communication diagram’s symbol and explanation
Login Communication diagram

Flow of event:

The user clicks the Login button on the Home Page (See Figure 4-9 step 1). The system displays the Login Page (See Figure 4-9 step 2). The user enters his or her username and then clicks the Next button (See Figure 4-9 step 3 and step 4). The system verifies the login information against the persistent Detail data and then returns the user to the Login page (See Figure 4-9 step 5 and step 6). The user enters his or her password code and then clicks the Next button (See Figure 4-9 step 7 and step 8). The system verifies the login information against the persistent Password data and then returns the user to the Login page (See Figure 4-9 step 9 and step 10). The system display a login successfully message (See Figure 4-9 step 11).
Register Communication Diagram

Flow of event:

The user clicks the Register button on the Home Page (See Figure 4-10 step 1). The system displays the Register Page (See Figure 4-10 step 2). The user enters the personal detail and then clicks the NEXT button (See Figure 4-10 step 3 and step 4). The system verifies the username against the persistent Detail data and then returns the user to the Register page (See Figure 4-10 step 5 and step 6). The user chooses his or her password image and enters his or her password for each image then click the SUBMIT button (See Figure 4-10 step 7 and step 8). Step 7 and step 8 are repeated 5 times (See Figure 4-10 step 9). The user check the result and then click the CONFIRM button (See Figure 4-10 step 10 and step 11). The system creates a record in the Detail and Password tables in the databases (See Figure 4-10 step 12). The system displays the Login page (See Figure 4-10 step 13).
Flow of event:

The user clicks the Reset button on the Home Page (See Figure 4-11 step 1). The system displays the Reset Page (See Figure 4-11 step 2). The user enters his or her username and then clicks the Next button (See Figure 4-11 step 3 and step 4). The system verifies the username information against the persistent Detail data and then returns the user to the Reset page (See Figure 4-11 step 5 and step 6). The user enters his/her personal detail and then clicks the NEXT button (See Figure 4-11 step 7 and step 8). The user chooses his or her password image and enters his or her password for each image then click the SUBMIT button (See Figure 4-11 step 9 and step 10). Step 9 and step 10 are repeated 5 times (See Figure 4-11 step 11). The user check the result and then click the CONFIRM button (See Figure 4-11 step 12 and step 13). The system updates the Detail and Password tables in the databases (See Figure 4-11 step 14). The system displays the Login page (See Figure 4-11 step 15).
4.2.2 Analysis Class

This subsection specifies and identified the analysis classes. The results presented in this subsection are extracted from the previous subsection, which has provided a clear picture of the analysis model. This is done by describing each use case realisation as collaboration of analysis objects.

The responsibilities and attributes of each analysis classes are described in Table 4-8. These responsibilities are needed by the analysis classes to perform use case realization. Class diagram are use to model the system involves and to identify things that are important to a particular view. Those things form the vocabulary of the system that we are modelling. In this project, we have five class or objects that will represent the system as a whole. Table 4-9 shows the symbol and the meaning of the class diagram. Figure 4-12 shows the class diagram of CRGPS with object’s attributes and functions.

<table>
<thead>
<tr>
<th>Analysis Class</th>
<th>Responsibilities</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password</td>
<td></td>
<td>-username</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-password image</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-password code</td>
</tr>
<tr>
<td>Detail</td>
<td></td>
<td>-username</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-IC number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-gender</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-race</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-state</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-postcode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-country</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-e-mail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-password image 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-password image 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-password image 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-password image 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-password image 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-private key</td>
</tr>
</tbody>
</table>

Table 4-8 Analysis classes with their responsibilities and attributes

<table>
<thead>
<tr>
<th>Symbol Name</th>
<th>Notation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td></td>
<td>This symbol represents a descriptor for a set of objects with similar structure, behaviour and relationship.</td>
</tr>
<tr>
<td>Association</td>
<td></td>
<td>This symbol represents an association between two classes.</td>
</tr>
</tbody>
</table>

Table 4-9 Class diagram’s symbol and explanation
4.3 A Review of Development Tools

4.3.1 Programming Languages

Overall, there are two major types of scripting languages, the server side scripting language and client side scripting language. For instances, ASP.NET (Active Server Page), PHP (Professional Home Page), CGI (Common Gateway Interface) are some examples of server side scripting language. These languages require their software to be installed into the server before they can run on that particular server. These languages are mainly used in supporting and producing of dynamic web pages.

On the other hand, HTML (Hyper Text Mark-up Language), JavaScript and VB Script are languages that are run on the client side. In essence, HTML is not exactly a ‘scripting’ language. There are some differences between plain HTML Web pages and dynamic Java / VB Script embedded HTML web pages. While HTML is being used in creation of simple document for viewing through web browsers on the World Wide Web, JavaScript or VB Script is able to increase the aesthetics and friendliness of websites through addition of author-specified user events, such as a mouse event.

(a) Server Side Scripting Language

i. Microsoft ASP.NET 2.0

ASP.NET 2.0 is a server side scripting technology that enables embedded scripts to be executed by an Internet/web server. In essence, ASP.NET 2.0 is a program that runs on the IIS platform. Essentially, when a browser requests for an ASP.NET file, IIS will passes the request to the ASP.NET engine on the server. The ASP.NET engine
would read the file, line by line, and executes the scripts in the file. Finally, the ASP.NET file is returned to the browser and interpreted as plain HTML.

In this project, ASP.NET 2.0 was selected as the main programming language because:

1. ASP.NET provides object-oriented programming. Also, inheritance, polymorphism, and encapsulation are supported by ASP.NET.
2. ASP.NET provides a flexible development environment. For instance, developers could use WebMatrix, a community-supported tool, Visual Studio .NET, or various Borland tools such as Delphi and C++ Builder as their development tools. Visual Studio, for instance, allows setting of breakpoints, tracing sections of code, and reviewing of call stack.
3. ASP.NET integrates well with most databases through ODBC, which provides for consistent set of calling functions to access databases.

ii. Perl / Common Gateway Interface (CGI)

Common Gateway Interface (CGI) is an interface specification that allows communication between client programs and information servers through Hyper-Text Transfer Protocol (HTTP). TCP/IP is use as the communications protocol between the CGI script and the server. The default port for communications is port 80 (privileged), but other non-privileged ports may be specified.

CGI scripts can perform relatively simple processing on the client side. A CGI script can be used to format Hyper-Text Mark-up Language (HTML) documents, dynamically create HTML documents, and dynamically generate graphical images. CGI can also perform transaction recording using standard input and output mechanism. CGI stores information in system environment variables that can be accessed through the CGI scripts. CGI scripts also have the capability to accept command line arguments.

For this project, CGI was not chosen as the preferred programming language because:

1. CGI is rather weak on its input validation functionality (Ellison et al. 2000, pp. 311-8). Through CGI specification, which allows reading of files and shell access, it is possible that access to the servers and host are exploited. Possible means of access include exploitation of script assumptions, weaknesses to server environment, and exploitation of weaknesses in other programs and system calls. Such exploitation could corrupt the file systems.
iii. Professional Home Page 5 (PHP)

PHP, also known as Personal Home Page, was created by Rasmus Lerdorf. Similar to ASP.NET, PHP is also a server-side scripting language used to create dynamic Web pages. However, unlike ASP.NET, PHP is an Open Source and can be implemented across various platforms. PHP's strongest feature is its database interfacing capability, which supports many of the most popular database servers on the market. These include MySQL, Oracle, Sybase and Generic ODBC databases.

PHP was not chosen as the preferred programming language because:

1. Its lack of exceptions, event-based error-handling instances could interrupt the normal flow of a program.
2. PHP is considered a weak object-oriented programming.
3. It has a bad recursion mechanism. Recursion is the mechanism in which a function calls itself.

(b) Client Side Scripting Language

i. HTML and DHTML

HTML language is only a mark-up language for the process of document viewing. To be more specific, it produces only static Web pages. The original design goal of HTML was to be device independent. That is, it was to be used on a variety of computer systems and platform without change. Accordingly, it was designed to be a language to describe document structure, rather than document presentation. So, the basic HTML elements specify such things as headings, titles, and paragraphs - but not margins and fonts. It was left up to the browser on any specific system to take care of rendering the document in whatever way the browser author thought most suitable.

The basic idea of Dynamic HTML is quite simple - to allow any element of a page to be changeable at any time. Dynamic HTML builds upon existing HTML standards to expand the possibilities of Web page design, presentation, and interaction (Shamir 1979, pp. 612-3). Basically, mastering DHTML will allow you to build Web-based applications, rather than just plain HTML. Because DHTML is essentially an "added value" technology to HTML, it is rather similar to basic Web page design that uses traditional HTML specifications. In order to transform a Web page from static status to dynamic, some of the existing scripting languages can be embedded to the HTML language. Those languages are ASP.NET, PHP, Cold Fusion, Perl, Java or Visual Basic Script and others.
ii. **JavaScript**

JavaScript is also referred to as a scripting language. It is developed by Netscape and Sun Microsystems in late 1995. In addition to the common features found in most programming languages, such as variables, functions, flow control, statements, and a full suite of operators, JavaScript also possesses some capabilities of object-oriented languages. Essentially, JavaScript allows a script author to access objects which appear on a page. User will be allowed to use or modify the object attributes, which are often, refer to as events.

JavaScript is also much more dynamic than plain HTML. For example, JavaScript can be embedded into a page statement, which allows users response for certain common events such as mouse clicks or form requests. Another nice feature of JavaScript is that it is not a sophisticated programming language as inexperience script writer will be able to create active scripts and practical user events with ease.

iii. **Visual Basic.NET (VB.NET)**

VB.NET is developed by Microsoft. VB.NET is commonly used to build window based application and as a scripting language. In this project, VB.NET chosen as the main scripting language because:

1. It is very easy to learn
2. Application and algorithm implementation is quick
3. There are a lot of in-built functionality
4. It has complete object-oriented programming support

(c) **Database Language**

SQL

SQL is a programming language that is used in manipulation and retrieval of data from relational databases. SQL enables a programmer or database administrator to do the following:

- Modification of a database structure,
- Changing of system security settings,
- Adding of user permissions on databases or tables,
- Querying of database for information,
- Updating contents of a database.
The most commonly used statement in SQL is the SELECT statement. This statement would retrieve data from the database for the user. In addition to the SELECT statement, SQL provides statements for creation of new databases, tables, fields, and indexes, as well as statements for insertion and deletion of records.

4.3.2 Relational Databases

The concept behind a database is rather simple. A database is like file cabinets that can store information. A database can also be treated as a collection of information, with relation to application. Relational database management system is a type of database management system (DBMS) that stores data in the form of related tables. Relational databases are powerful because very few assumptions are required on how the data is related in order to extract the data from the database. As a result, the same database can be viewed in many different ways. An important feature of relational systems is that a single database can spread across several tables. This differs from flat-file databases, where each database is self-contained in a single table.

i. Microsoft SQL 2005 Server Express Edition

SQL Server 2005 Express Edition is a free and easy-to-use database product that is based on SQL Server 2005 technology. It is designed to provide a database platform that offers ease of use and enabling fast deployments for its target scenarios. The ease of use is through a simple and robust graphical user interface (GUI) setup, which guides the user through the installation process. GUI tools that come with the SQL Server Express include SQL Server Management Studio Express Edition, Surface Area Configuration Tool, and SQL Server Configuration Manager. These tools simplify the basic database operations. The design and development of database applications are made even easier through integration with Visual Studio projects. In addition, it introduces the ability to deploy database applications by moving them like typical Windows files. Servicing and patching are also simplified and automated.

SQL Server Express uses the same reliable and high-performance database engine as the other versions of SQL Server 2005. It also uses the same data access APIs such as ADO.NET, SQL Native Client, and T-SQL. In fact, it is differentiated from the rest of the SQL Server 2005 editions only by the following (Microsoft Corporation 2008):

- Lack of enterprise features support
- Limited to one CPU
- One GB memory limit for the buffer pool
- Maximum 4 GB size for databases.

ii. MySQL 5.0

MySQL is a multi-threaded, multi-user and robust SQL database server. MySQL is also flexible in allowing user to store logs and pictures into it. Although MySQL is seen as a small and compact database server, it is still ideal for all sizes of applications. In addition to supporting standard SQL (ANSI), it also has multithreading abilities on UNIX servers, which make for great performance. For non-Unix users, MySQL is run as a service on Windows 2000 and as a normal process in Windows 98/XP.

In this project, MySQL was not chosen because:
- It has limited support resources and a small partner ecosystem.
- Its performance is questionable and has limited scalability.
- It was not benchmark to industry standard performance such as TPC and SAP.
- It has no distributed partitioned views.
- It has a basic query optimizer that is not optimized for the highest performance.

4.3.3 Database Connectivity

i. Open Database Connectivity (ODBC)

ODBC is rather dynamic because it employs a single uniform language in accessing different databases, instead of using the propriety language of each database. This is done through usage of a standard set of APIs (Application Program Interface). As each type of databases has its own API, this would allow ODBC to interpret any request that is sent to ODBC by the programmer. This open connectivity to a database allows an application to get data from any kind of database by using the appropriate ODBC driver. The ODBC driver is packaged with Microsoft SQL 2005 Server, Microsoft Access and so on.

ii. Java Database Connectivity (JDBC)

JDBC (Java Database Connectivity) technology is an API that allows user access to virtually any data source from any Java programs or systems. It provides cross-DBMS connectivity to a wide range of SQL databases. JDBC API also provides access to other tabular data sources, such as spreadsheets or flat files. JDBC is modelled upon ODBC (Object Database connectivity). Additionally, it provides an object-oriented model for accessing databases, permitting use of Java methods as well as SQL.
for querying and updating data. The JDBC standard means that applications can be written without considering what driver will be used in the final deployment. This capability gives system managers the freedom to change database engines without requiring a change in program logic.

4.3.4 Web Server

A Web server is a program that uses the client/server model and Hypertext Transfer Protocol (HTTP), which is use for forming of Web pages for web user, whose computers contain HTTP clients that forward their requests. Every computer on the Internet that hosts a Web site must have a Web server program. The most popular Web servers are Microsoft’s Internet Information Server (IIS).

i. Microsoft Internet Information Server 6.0 (IIS)

Microsoft has quickly established its Internet Information Server (IIS) as one of the premier Web servers on the Net. IIS is available for most windows server operating system packages and this has transformed the window platform into a feasible solution for delivering Web-based applications. With IIS, Web administrators does not have to turn to the more complicated UNIX platforms to provide fast and reliable Web services; IIS is just as powerful and is much easier to set up and maintain than many of its UNIX-based competitors.

ii. Apache Web Server

Apache is a high-end enterprise-level server. Based originally on NCSA’s freely available HTTP server, it dominate the Web server market and left its competitor such as Microsoft Internet Information Server quite far behind. Apache is famous with its rock-solid reliability, outstanding performance, and rich set of features.

The major advantages of Apache are its price because Apache is a freeware, cross-platform support, performance and robustness, rock-solid reliability, security, support for most HTTP protocol, extensibility, quick technical support via Usenet newsgroup, and its streamlined interface.

There are some drawbacks for Apache Web Server though, such as an interface that is lacking in wizards and graphical administration tools for facilitation of configuration and administration tasks, more extensive technical support would requires the purchase of a third-party support contract.
4.3.5 Consideration of Client-Server Computing

Client-server describes the relationship between two computer programs in which one program, the client, makes a service request to another program, the server, which fulfils the request. In a network, the client-server model provides a convenient way to interconnect programs that are distributed efficiently across different locations.

In the usual client-server model, one server, sometimes called a daemon or service, is activated and would await client requests. Typically, multiple client programs would share the services of a common server program. Both the client programs and server programs are often part of a larger program or application. Relative to the Internet, Web browser is a client’s program that requests services such as the sending of Web pages or files from a Web server which technically is called a Hypertext Transport Protocol or HTTP server in another computer somewhere on the Internet. Client-server computing can come in a number of tiers, such as two-tier, three-tier or N-tier.

i. Two tier Architecture

The simplest variant, the two tier architecture is useful for small-scale applications. Data management for this variant is moved to a dedicated server, where it’s accessible through multiple clients over a network.

![Figure 4-13 Two tier Architecture](image)

ii. Three tier Architecture

Two tier client-servers architecture is satisfactory at best, but do not necessarily make the most of the server processing power. If there are objects that are working with data only, and perform business-related functions, then we can put the object on an application server. The objects can be called from the client whenever they are needed. This reduces some of the network traffic and allows closer integration between the application server and the database server.
iii. N-tier Architecture

N-tier architecture is an extension of the three-tier architecture and works in a similar fashion but with additional object separation. For N-tier architecture, many partitions can be created. Theoretically, there are:

- A user interface.
- A set of business objects that checks and organises the client’s request.
- A mirror image of those business objects that provides persistence code.
- A database.

4.3.6 Cryptography

Encryption is required to increase the security between the client and server. Cryptography helps in securing data from being viewed or modified. It provides a secure means of communication over otherwise insecure channels. For example, data can be encrypted using a cryptographic algorithm, transmitted in an encrypted state, and later decrypted by the intended party. If the data is intercepted by a third party, it will be difficult for him/her to decipher the data.

Cryptography is used to achieve the following goals:

- Confidentiality: To help protect a user's identity or data from being read.
- Data integrity: To help protect data from being altered.
- Authentication: To assure that data can only be accessed by authorised personnel.

There are two types of encryptions. The first one is the secret-key encryption (symmetric cryptography) and the second one is public-key encryption (asymmetric cryptography).

Secret-key encryption algorithms use a single secret key to encrypt and decrypt data. Secret-key encryption is also referred to as symmetric encryption because the same key is used for encryption and decryption. Secret-key encryption algorithms are extremely fast (as compared to public-key algorithms) and are well suited for performing
cryptographic transformations on large streams of data. Typical secret-key algorithms are RC2, DES, TripleDES, and Rijndael.

Public-key encryption uses a private key that must be kept secret from unauthorised users and a public key that can be made public to anyone. The public key and the private key are mathematically linked; data encrypted with the public key can be decrypted only with the private key, and data signed with the private key can only be verified with the public key. The public key can be made available to anyone and is used for encrypting data to be sent to the keeper of the private key. Both keys are unique to the communication session. Public-key cryptographic algorithms are also known as asymmetric algorithms because one key is required to encrypt data while another is required to decrypt data. Typical public-key algorithms are RSA and CSA encryption. In this project, the public-key encryption was chosen because:

- Data to be encrypted, which is the user’s password, is rather small.
- By using the public-key encryption, the speed for performing the cryptographic transformations is acceptable.

4.4 Proposed Tools

The tools that will be used for this project includes:

⇒ Server

The CRGPS will be built based on the two tier client server model and will use Microsoft SQL 2005 Server Express edition as its database. It will run on Microsoft Internet Information Server 6.0 with embedded ASP.NET 2.0 on the Windows XP platform. The reason for choosing these components is that compatibility would not be an issue as each of these components will be able to run well in Windows based environment. Therefore, this would ensure that compatibility issues are minimised and implementation is less complicated.

⇒ Programming Languages

ASP.NET 2.0 is chosen as the server side scripting language to allow production of DHTML documents as output. ASP.NET is chosen because it is a powerful language and is designed principally for the Windows platform. VB.NET is chosen as the client side scripting language to produce the system functions. DHTML technology is used because as it is currently the most popular technology and is recognised as the standard web technology. HTML will be use as a major presentation tool and will be assisted by use of CSS (Cascading Style Sheet).
4.5 Run Time Requirements

Server hardware requirement:
- Pentium 4 processor or higher,
- Minimum 512 RAM or higher,
- Minimum 2.0 GB of hard disk or higher.

Server software requirement:
- Windows XP Professional SP2,
- Microsoft Internet Information Server 6.0(IIS),
- Microsoft SQL 2005 Server Express Edition,
- Internet Explorer 6.0 or above.

Client hardware requirement
- Minimum Pentium I processor or higher,
- Minimum 16 MB of RAM or higher,
- Minimum 1.0 GB of hard disk or higher,
- VGA colour monitor,
- Standard Keyboard and Mouse.

Client Software Requirement
- Internet Explorer 6.0 or above.

4.6 Conclusion

The use case model, which defines the requirements of the product and the analysis model, which describes the detail requirements, has been presented in this chapter. These use cases can be mapping to the design and will be explain in detail chapter 5. Two analysis classes have been identified to realise the three use cases identified earlier. A review on development tools discussed about the various programming language, database connectivity, computing architecture and cryptography. This section also discussed about the limitation in using these tools. The chosen tools had been listed out in the following section. Then, the minimal run time requirement had been clarified to make sure CRGPS can run smoothly.
Chapter 5 Design

This chapter presents the resulting design for this project. There are seven sections in this chapter. The first section, section 5.1 will specify the result of use-case realisation of the design model. Section 5.2 describes the design classes as a whole. Section 5.3 describes the database design while section 5.4 describes the entity relationship diagram to provide a better understanding of the system. The fifth section, section 5.5 provides an overview of CRGPS structure while section 5.6 presents the interface design. Finally, section 5.7 will provide a conclusion of the chapter.

5.1 Use Case Realisation – Design

The use case realization of the design model is described using sequence diagrams to show the collaboration of design objects. Every use case realization will be described with one sequence diagram and the flow of event. A sequence diagram is an interaction diagram that emphasizes the time ordering of the messages. Table 5-1 shows the symbol and the meaning of the sequence diagram. CRGPS have three sequence diagrams. There are Login, Register and Reset as shown in Figure 5-1 and Figure 5-2.

<table>
<thead>
<tr>
<th>Symbol Name</th>
<th>Notation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Lifeline</td>
<td></td>
<td>This symbol represents the existence of an object at a particular time.</td>
</tr>
<tr>
<td>Activation</td>
<td></td>
<td>This symbol represents the period of time during which an object is performing an action.</td>
</tr>
<tr>
<td>Message(call)</td>
<td>Message1()</td>
<td>This symbol represents a communication (message call) between objects.</td>
</tr>
<tr>
<td>Message(return)</td>
<td>Message1()</td>
<td>This symbol represents a communication (message return) between objects.</td>
</tr>
</tbody>
</table>

Table 5-1 Sequence diagram’s symbol and explanation
Login sequence diagram

The User clicks the Login button on the Home Page.

The system displays the Login Page.

The User enters his/her username and then clicks the Next button.

The system verify the username against the persistent Detail data.

The User enters his/her password code and then clicks the Next button.

The system verify the password code against the persistent Password data.

The system displays login successful message.
The User clicks the REGISTER button on the Home Page.

The system displays the Register Page.

The User enters the personal information and then clicks the NEXT button.

The system verify the username against the persistent Detail data.

The User chooses his or her password image and enters his or her password for each image then click SUBMIT button.

Repeat 5 times.

The User check the result and then click the CONFIRM button.

The system creates a record in the Detail and Password tables in the databases.

The system displays Login Page.

The system displays Login Page.

Figure 5-2 Register sequence diagram
The User clicks the RESET button on the Home Page.
The system displays the Reset Page.
The User enters his/her username and then clicks the Next button.
The system verify the username against the persistent Detail data.
The User changes his or her personal information and then clicks the NEXT button.
The system displays User's passwords.
The User clicks CHANGE PICTURE button.
The User chooses his or her password image and enters his or her password for each image then click SUBMIT button.
Above step repeat 5 times.
The User checks the result and then click the CONFIRM button.
The system creates a record in the Detail and Password tables in the databases.
The system displays Login Page.
5.2 Design Class

This subsection specifies the design classes of this project. The results presented in this subsection are extracted from the previous subsection, which has provided a clear picture of the design classes through describing of each use case realisation as collaboration of design objects using sequence diagram.

![Class diagram of CRGPS](image)

Based on their identification, there are three kinds of objects. Those objects are Boundary Object, Control Object and Entity Object. Boundary object can be visualised as the user interface. There are four boundary objects in the system, which are Login page, Register page, Reset page and Home page. There are two entity objects in the system. Entity object can be seen as tables, represented in a database. The two entity objects are: Password that holds the username and password data, and Detail that hold the user detail.

5.3 Database Design

The data design transforms the information domain model created during analysis into data structures that are required to be implemented as software. Database
design is the most important design of all design activities. Microsoft SQL 2005 Server Express Edition is selected to develop the database system because it is compatible with Microsoft ASP.NET, which is the programming tool used to create the system. The database that is created is connected to the application to perform functions such as updating, adding or deletion.

5.3.1 Data Flow Diagram (DFD)

A Data Flow Diagram is a technique used to graphically illustrate the flow of data through a system and the process performed by the system. DFD gives an overview of inputs and outputs, processes and the flow of data through each process.

A DFD is drawn using four basic symbols to represent processes, data flows, data stores, and external entities. CRGPS have two DFDs which is a content level DFD and a level 1 DFD, as show in Figure 5-5 and Figure 5-6.

<table>
<thead>
<tr>
<th>Symbol Name</th>
<th>Notation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td></td>
<td>This symbol represents process which transform or manipulates data within the system.</td>
</tr>
<tr>
<td>Data Flow</td>
<td></td>
<td>This symbol represents flow of data between two objects. The arrow denotes the direction of the data flow.</td>
</tr>
<tr>
<td>Data Store</td>
<td></td>
<td>This symbol represents data stores where the data is held for a time frame within the system.</td>
</tr>
<tr>
<td>Entity</td>
<td></td>
<td>This symbol represents external entity, can be external source or recipient (e.g., person or other system) which donates and receives information from the system.</td>
</tr>
</tbody>
</table>

![Figure 5-5 Content level DFD](image)

User will need to register by supplying some user detail, for example name, address and IC number to the system. The system will register the user. If the user is a
User can register by supplying the user detail. The system will create a record at the Detail table in the database. The system will return the user to the Login page. User can login by supplying the username and password. The system will check the authentication of the supplied username and password as compared to information in the Detail table and Password table in the database. If the username and password is correct then permission to access the services is granted.

5.3.2 Table Name and Functions

The CRGPS database consists of two tables. The name for each table and a short description of each table’s function is described in the following section.

1. Detail - Keeps personal record of user, inclusive of username, name, IC number and so on.
2. Password - Stores user’s password information.
5.3.3 Design of Tables

Data storage is considered to be the most important part of a system. The general objectives in design of data storage are listed as below.

- Data availability
- Efficiency of data storage
- Purposeful information retrieval
- Efficiency of data updates and retrieval
- Data integrity
- Avoid data duplication

The design of tables was as follow:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserName</td>
<td>nchar(12)</td>
<td>username</td>
</tr>
<tr>
<td>name</td>
<td>nchar(40)</td>
<td>name</td>
</tr>
<tr>
<td>IC</td>
<td>nchar(20)</td>
<td>identification card number</td>
</tr>
<tr>
<td>gender</td>
<td>nchar(10)</td>
<td>gender</td>
</tr>
<tr>
<td>race</td>
<td>nchar(20)</td>
<td>race</td>
</tr>
<tr>
<td>address</td>
<td>nchar(60)</td>
<td>address</td>
</tr>
<tr>
<td>state</td>
<td>nchar(20)</td>
<td>state</td>
</tr>
<tr>
<td>postcode</td>
<td>nchar(10)</td>
<td>postcode</td>
</tr>
<tr>
<td>country</td>
<td>nchar(20)</td>
<td>country</td>
</tr>
<tr>
<td>e_mail</td>
<td>nchar(20)</td>
<td>e-mail</td>
</tr>
<tr>
<td>pass_image_1</td>
<td>nchar(20)</td>
<td>password image 1</td>
</tr>
<tr>
<td>pass_image_2</td>
<td>nchar(20)</td>
<td>password image 2</td>
</tr>
<tr>
<td>pass_image_3</td>
<td>nchar(20)</td>
<td>password image 3</td>
</tr>
<tr>
<td>pass_image_4</td>
<td>nchar(20)</td>
<td>password image 4</td>
</tr>
<tr>
<td>pass_image_5</td>
<td>nchar(20)</td>
<td>password image 5</td>
</tr>
<tr>
<td>private_key</td>
<td>nchar(100)</td>
<td>private key of RSA encryption</td>
</tr>
</tbody>
</table>

Table 5-3 Table Detail

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserName</td>
<td>nchar(12)</td>
<td>username</td>
</tr>
<tr>
<td>pass_image</td>
<td>nchar(20)</td>
<td>password image</td>
</tr>
<tr>
<td>pass_code</td>
<td>nchar(500)</td>
<td>password code</td>
</tr>
</tbody>
</table>

Table 5-4 Table Password
5.4 Entity Relationship Diagram

![Entity Relationship Diagram]

Figure 5-7 illustrate an entity relationship diagram between a user (Detail) and the user account (Password). A user has a user account and a user account is owned by a user. A user has many attributes such as name, address, e_mail and IC. An account has three attributes which are UserName, pass_image and pass_code.

5.5 Overview of CRGPS Structure

CRGPS architecture is divided into 2 distinct tiers – client tier and host tier. Client tier provides user services. Users’ services are used to support user’s input and allow queries to be performed via web browsers. This tier basically forwards the request for Web documents to the host tier.

The host tier provides the authentication services. This tier resides in the machine running Microsoft Internet Information Server (IIS). Requests and responses are handled and controlled by this tier explicitly written codes that produce ASP.NET pages. The host tier also provides database services. This tier contains a repository of relevant data stored in Microsoft SQL 2005 Server Express Edition database.
Figure 5-8 CRGPS Architecture

Figure 5-9 shows a simple flow chart for non-IT users. This flow chart will provide a better understanding on the system’s overall functions flow.

Figure 5-9 CRGPS simple flow chart

5.6 Interface Design

An interface design is very important to determine the quality of a system. A well-designed interface should meet the objectives of efficiency, accuracy, ease of use (user friendliness), simplicity, and attractiveness. To increase the attractiveness of the system, several basic techniques are considered, which are:

1. **Scan-ability** - Layout of CRGPS should include things like headings, subheadings, bulleted lists and highlighting of key words in the text.
2. **Simple Language** - Simple language that is concise to the point, with no waffling, correct spelling and grammar. Text messages should avoid technical jargon, and limited to a maximum of three lines.

3. **Page Navigation** - Navigation refers to the structure of the system and the patterns, by which users traverse the system, and the linking mechanism, by which they move from one place to another. The system must be neat, consistent and has an intuitive navigational interface to attract visitors. Few factors that could lead to the success of navigational portal are:
 a. Use of clear and consistent navigational aids page names, logos, banners, and icons, and background colours as virtual clues for users.
 b. Consistent icon or design to notify people that will take them to another page.

4. **Overall Appearance** - Interface controls (capitalization, alignment, highlighting, etc) are consistently labelled. Attractive media such as animation, sound and graphics can make content come alive.

5. **Animation** - Moving text must be short and only indicates the major title of the page to attract visitors and alert people of updated information.

6. **Graphic/Images**
 a. Optimal use of graphics and image only in relevant page to avoid slow down in loading of pages.
 b. Text colour, background colour and size effect should be matching.
 c. Strongly contrast colour between background and foreground colour.

Figure 5-10 Login page design
Figure 5-11 Registration page design
5.6.1 Form Design

Forms play a very important role as a tool for obtaining or capturing data in any information system. They are the most commonly used dialogue-types data entry. They are also used in retrieval and editing of data. Use of form can be an error prone process because people may misunderstand the instruction, fields might be skipped, or information is given in the wrong format.

Forms are also designed to be use during system development as it can be used as the basis for data entry screen design. With use of form, user will be familiar with the data entry interface layout as all layouts will be similar aesthetically. There are three types of forms’ layout, which can be used in designing forms. They are:

- Caption before
- Caption after
- Caption and box design

The caption and box design is usually favoured because it gives the best visual link between the caption and the data entry area. It also encourages readable input and
provides a more visible structure to the form. In order to make the process flows better, these components will be used for the purpose of interface design:

- Text Field
- Button
- Drop down list
- Validator such as require field validator and regular expression validator

5.7 System Design

In summary, features included in the CRGPS are:

- Users – Customer of the product or system.
- General Administrator – The person or a group of persons in charge on general administration of the whole system.
- System Access – Inclusive of login page, registration page and reset page that allow users to modify their details.

5.8 Conclusion

The design model for this project has been presented and described in this chapter. Six design classes are used in the realisation of the three use cases specified in the previous chapter.
Chapter 6 Implementation

This chapter presents the result of project implementation. There are six sections in this chapter. The first section, section 6.1 will specify the architectural implementation. Section 6.2 describes on how to integrate the system. Section 6.3 describes on implementation of subsystem while section 6.4 describes implementation of a class. The fifth section, section 6.5 describes how to perform the unit test. Finally, section 6.6 provides a conclusion of the chapter. The purposes of the implementation workflow are to:

- Plan the system integrations required as per iteration.
- Distribute the system by mapping executable components onto nodes in the deployment model.
- Implement the design classes and subsystems established during design.
- Unit test the components, and then integrate them.

In software life cycles (see Figure 3-5), the focus on implementation was during the construction iterations. It is also done during elaboration phase to create executable architectural baseline, and during the transition phase to handle late defects. Figure 6-1 illustrates the implementation workflow with the five participating activities.

![Figure 6-1 The activities in the implementation workflow](image)

6.1 Activity: Architectural implementation

The purpose of activity architectural implementation is to outline the implementation model and its architecture by identifying architecturally significant components such as executable components, and mapping them to nodes in the relevant network configurations. As illustrated by Figure 6-2, this activity will have the design model, deployment model, and the architecture description as input to produce an outline of components and the architectural description of implementation and deployment model.
Deployment model

![Deployment diagram](image)

The CRGPS deployment diagram shows a collection of nodes, and also dependencies and associations among those nodes. This system has three main nodes, which are the web browsers that are used to view the system; CRGPS included the database, and the Administrator computer. We include a printer as one node, where it is designated as the administrator local printer.

6.2 Activity: Integrate system

The purposes of this activity are to create an integration build plan describing the builds required in iteration, the requirements on each build, and to integrate each build before being subjected to integration tests. As illustrated in Figure 6-4, the input for this activity would be the supplementary requirements, use-case model, design
model, and implementation model, in order to produce the integration build plan and the implementation model.

Planning a subsequent build The activity will start with planning on the following build. The build may be the first, or continuation of the previous build. Every build should add additional functionality.

Integrating a build In this step, builds are integrated. It is done by collecting the implementation subsystems and components, compiling them, and linking them into a build.

![Diagram](image-url)
Figure 6-4 The input and result of activity integrate system

6.3 Activity: Implement a subsystem

The purpose of activity to implement a subsystem is to ensure that a subsystem fulfils its role in each build. In other words, it is to ensure that the requirements are implemented in the build, and those that affect the subsystem are correctly implemented by components or other subsystem within the subsystem. The input for this activity is the integration builds plan, architectural description, design subsystem, and interface to produce the implementation subsystem, and the interface (see Figure 6-5). Interface examples for CRGPS were show in Figure 5-10, Figure 5-11 and Figure 5-12.
6.4 Activity: Implement a class

The purpose of this activity is to implement a design class in a file component, which includes outlining a file component that contain the source code, generating source code from the design class, implementing the operations of the design class, and ensuring that the components provide the same interface as the design class. As illustrated in Figure 6-6, design class, and interface provided by the design class will form the input and the activity will produce the implemented component as the result. The activity will be carried out in four steps.

Outlining the file components In this step, the file components where the source code that implements the design class resides are outlined.

Generating code from a design class The source code is generated according to the design class in this step. If the design class has been described using the syntax of the programming language during design, this step will be straightforward.

Implementing operations In this step, operations of the class will be produced. This step involves choosing a suitable algorithm and specified data structure, and then coding the actions required.

Making the component provide the right interface In this step, interfaces are verified to ensure that the component provide the same interface as the design classes that it implements.
6.5 Perform unit test

The purpose of this activity is to test the implemented components as individual units. The component and interface will form the input of this activity to produce the unit-tested component (see Figure 6-7). The following are two types of unit test performed.

Specification tests Specification test is also known as “black-box test”. It is done to verify the component’s behaviour without considering how that behaviour is implemented within the component. The test is conducted by observing the output that the component will return when given certain input, and when starting in a particular state.

Structure tests Structure test is also known as “white-box test”. It is done to verify that a component works internally as intended. During structure testing, all code should be tested. In other words, every statement has to be executed at least once.

6.6 Conclusion

Chapter 6 discussed the system implementation’s activity of the CRGPS. The detail of the implementation activity is presented in this chapter.
Chapter 7 Testing

This chapter presents the result of testing for this project. There are seven sections in this chapter. The first section, section 7.1 will specify on planning for the test. Section 7.2 describes on how to design the test. Section 7.3 describes how to implement the test plan while section 7.4 describes how to perform the integration test. The fifth section, section 7.5 describes on how to perform system testing while section 7.6 describes on evaluation of the test. Then, section 7.7 described a usability study. Finally, section 7.8 provides a conclusion of the chapter.

In the test workflow, the result from implementation are verified by testing each build, inclusive of both internal and intermediate builds, as well as the final versions of the system to be released to external parties. As illustrated in Figure 7-1, this workflow will be performed with six activities. The purposes of this workflow are to plan the tests required in each iteration, to design and implement the testing through test cases that specify what to test, and perform the various tests and on handling of test results for each test. In the software life cycle (see Figure 3-5), test is the focus during the elaboration phase, when the executable architectural baseline is tested, and during construction, when the bulk of the system is implemented. However, some initial test plan may occur during the inception phase, when the system scope is being determined.

![Figure 7-1 The activities in workflow test](image)

7.1 Activity: Plan test

The purpose of activity: plan test is to plan the testing efforts in iteration by describing a testing strategy, estimating the requirements for the testing effort, and scheduling the testing effort. The supplementary requirements, use-case model, analysis model, design model, implementation model, and architectural description will form the input of this activity. The activity will produce the test plan as the result (see Figure 7-2).
7.2 Activity: Design test

The purpose of activity: design test is to identify and describe test cases for each build, and to identify and structure test procedures, specifying on how to perform the test case. As illustrated in Figure 7-3, the input for this activity is the supplementary requirements, use-case model, analysis model, design model, implementation model, architectural description, and test plan to produce the test case, and the test procedure.

Designing integration test cases In this step, integration test case is designed. Integration test cases are used to verify that the components interact properly with each other after they have been integrated into a build.

Designing system test cases System test cases will be designed in this step. System test cases are used to verify that the system functions properly as a whole.

Designing Regression test cases Regression test cases would be designed in this step. Regression test case must be flexible enough to be resilient to changes of the software that is tested.

Identifying and structuring test procedures In this step, test procedures are identified and structured. This is done by walking through the test cases in order to suggest the testing procedures for each one.
A series of test cases was the result of this activity. Table 7-1 show the test cases done on the password aspect. Table 7-2 show the test cases done on the User ID aspect. Table 7-3 show the test cases done on the login page. Table 7-4 show the test cases done on the registration page and Table 7-5 show the test cases done on the reset page.
<table>
<thead>
<tr>
<th>Test case</th>
<th>Expected result</th>
<th>Actual result</th>
<th>After Fix</th>
</tr>
</thead>
</table>
| **Password:**
The following parameters will be tested out:

 a) Minimal password length of 4 characters.
 i) Password length < 4 characters.
 - Password not allowed.
-Appropriate message displayed to user.
 ii) Password length > 4 characters.
 -Password allowed.
 iii) Password length = 4 characters.
 -Password allowed. | OK | N/A |
| b) All the chosen password image must be different at the register page.
 i) Second password image same with the first password image.
 -Password not allowed
 -Appropriate message displayed to user.
 ii) Third password image same with the first password image.
 -Password not allowed
 -Appropriate message displayed to user.
 iii) Forth password image same with the first password image.
 -Password not allowed
 -Appropriate message displayed to user.
 iv) Fifth password image same with the first password image.
 -Password not allowed
 -Appropriate message displayed to user. | OK | N/A |
| c) Password’s must be disabled out after 3 failed sign on attempts.
 (User attempts to sign on 3 times in succession with a wrong password)
 i) At 2nd failed log on attempt.
 -Display warning message.
 -Message displayed that username has been disabled.
 -Redirect the user to a failed login page where user cannot start the login process again until the user starts a new session. | OK | N/A |

Table 7-1 Test case about password of CRGPS
<table>
<thead>
<tr>
<th>Test case</th>
<th>Expected result</th>
<th>Actual result</th>
<th>After Fix</th>
</tr>
</thead>
</table>
| **User ID:**
The following parameters will be tested out:
a) Only the valid username can access system.
 i) Sign on using valid username.
 -Access allows. OK N/A
 ii) Sign on using invalid username.
 -Access not allows.
 -Appropriate message displayed to user. OK N/A
 iii) Sign on using blank field.
 -Access not allows.
 -Appropriate message displayed to user. OK N/A
b) Only the ‘Admin’ username can have access to change the user’s information. (Check availability of security administration features)
 i) Sign on as ‘Admin’.
 -Can setup user’s information. OK N/A
 ii) Sign on as ‘Administrator’.
 -Cannot setup user’s information. OK N/A
 iii) Sign on as any other user.
 -Cannot setup user’s information. OK N/A
c) Username’s must be disabled out after 3 failed sign on attempts. (User attempts to sign on 3 times in succession with a wrong username)
 i) At 2nd failed log on attempt.
 -Display warning message. OK N/A
 ii) At 3rd failed log-on attempt.
 -Message displayed that username has been disabled.
 -Redirect the user to a failed login page where user cannot start the login process again until the user start a new session. OK N/A

Table 7-2 Test cases about User ID of CRGPS
<table>
<thead>
<tr>
<th>Test case</th>
<th>Expected result</th>
<th>Actual result</th>
<th>After Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login Page</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Run the login page.</td>
<td>-Login page display</td>
<td>OK</td>
<td>N/A</td>
</tr>
<tr>
<td>b) Test the links available.</td>
<td>-Link redirect the user to the destination page</td>
<td>OK</td>
<td>N/A</td>
</tr>
<tr>
<td>c) Password code stored in the database was decrypted to make comparison with the user enter password code.</td>
<td>-Password code were decrypted</td>
<td>Password code can not be decrypt.</td>
<td>OK</td>
</tr>
<tr>
<td>d) Failed login will receive an email contain user’s password code and password image.</td>
<td>-email sent to the user using user’s email address in registration process.</td>
<td>Attachments cannot display.</td>
<td>OK</td>
</tr>
<tr>
<td>e) Only three of the user’s password images displayed.</td>
<td>-randomly displayed three of the password images together with other 47 images.</td>
<td>Cannot displayed user’s password images.</td>
<td>OK</td>
</tr>
<tr>
<td>f) User must enter all the password code including the fake password code.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i) Skip enters one of the password code.</td>
<td>-Not allow to proceed.</td>
<td>OK</td>
<td>N/A</td>
</tr>
<tr>
<td>ii) Skip enters the fake password code.</td>
<td>-Not allow to proceed.</td>
<td>OK</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 7-3 Test cases about Login page of CRGPS
<table>
<thead>
<tr>
<th>Test case</th>
<th>Expected result</th>
<th>Actual result</th>
<th>After Fix</th>
</tr>
</thead>
</table>
| **Register Page**
 a) Run the register page.
 b) Register success when all the compulsory fields were filling in and in correct format.
 i) With some compulsory fields left blank.
 ii) With some fields in wrong format. | -Register page display.
 -Not allow to register.
 -Not allow to register.
 -Appropriate message displayed to user.
 -Appropriate message displayed to user. | OK
 OK
 OK
 Accept the registration.
 OK | N/A
 N/A
 OK |
| c) Only the valid username can be allow to register.
 i) Register with a username owned by another user. | -Not allow to register.
 -Not allow to register.
 -Appropriate message displayed to user. | OK
 OK
 OK | N/A |
| d) Username and password were stored in the database after the registration process completed. | -Information stored in database. | OK | N/A |
| e) All the password code was encrypted. | -Password code encrypted in base 64 format. | Password code encrypted in other format. | OK |

Table 7-4 Test cases about Register page of CRGPS
<table>
<thead>
<tr>
<th>Test case</th>
<th>Expected result</th>
<th>Actual result</th>
<th>After Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset Page
a) Run the reset page.</td>
<td>-Reset page display.</td>
<td>OK</td>
<td>N/A</td>
</tr>
<tr>
<td>b) Reset success when all the compulsory fields were filling in and in correct format.
i) With some compulsory fields left blank.</td>
<td>-Not allow to reset.
-Appropriate message displayed to user.</td>
<td>OK</td>
<td>N/A</td>
</tr>
<tr>
<td>ii) With some fields in wrong format.</td>
<td>-Not allow to reset.
-Appropriate message displayed to user.</td>
<td>Accept the reset.</td>
<td>OK</td>
</tr>
<tr>
<td>c) Only the valid username can be allow to reset.
i) Reset with a username owned by another user.</td>
<td>-Not allow to reset.
-Appropriate message displayed to user.</td>
<td>OK</td>
<td>N/A</td>
</tr>
<tr>
<td>d) Username and password were updated in the database after the reset process completed.</td>
<td>-Information updated.</td>
<td>OK</td>
<td>N/A</td>
</tr>
<tr>
<td>e) All the password code was encrypted.</td>
<td>-Password code encrypted in base 64 format.</td>
<td>Password code encrypted in other format.</td>
<td>OK</td>
</tr>
</tbody>
</table>

Table 7-5 Test cases about Reset page of CRGPS

7.3 Activity: Implement test

The purpose of this activity is to automate test procedures by creating test components. However, not all test procedures can be automated. This activity will use test case, test procedures, and implementation model as input and produces the test component (see Figure 7-4).
7.4 Activity: Perform integration test

In this activity, the integration tests required for each build are performed and the test results are captured. As illustrated in Figure 7-5, the test case, test procedure, test component, and implementation model are use as input. Firstly, the integration tests relevant to the build are performed by executing any test components automated by the test procedures or by manually performing the test procedures for each test case. Then, the test results are compared with the expected results, and there is a need to investigate test results that deviate from the norm. After that, defects are reported to the person responsible for the components. Finally, defects are reported for the purpose of evaluating the overall results of the testing effort.

![Figure 7-5 The input and result of activity perform integration test](image)

7.5 Activity: Perform system test

The purpose of this activity is to perform the system tests required in each iteration and to capture the test results. This activity has the test case, test procedure, test component, and implementation model as input.

![Figure 7-6 The input and result of activity perform system test](image)
7.6 **Activity: Evaluate test**

The purpose of this activity is to evaluate the testing efforts within iteration. The result of the testing effort is evaluated by comparing the results with goals outlined in the test plan. This activity uses the test plan, the test model, and the defect reported as input to produce the test evaluation (see Figure 7-7).

![Figure 7-7 The input and result of activity evaluate test](image-url)

7.7 **Usability Study**

Participants

Fifteen users were invited to test the system whether resistant to shoulder surfing or not. The participants were college student who were computer literate. Ten were female and five were male.

Materials

The system used in testing displayed 50 thumb nail in a window of 1280x1024 pixels. The set of thumb nail contain flower, animal, insect, reptile and bird. The thumb nails were randomly select from the database. The set of thumb nail contain 3 user’s selected earlier thumb nail and 47 other thumb nail. A user manual was distributed to the participants to explain and train the user to use the system.

Procedure

Participants carried out the testing individually in different session. Testing involved one participant as the user and another participant as the shoulder surfer. In the session the experimenter explained the purpose of the system and how it worked using the user manual. The tutorial took approximately 10 minutes. During a login process, a participant authenticated him or herself repeatedly until ten successful logins were achieved. To test the system in resistant to shoulder surfing, another participant act as an attacker was standing behind. The system was programmed to collect data on the number of correct and incorrect logins and the total time for each correct login. The
attacker was requiring giving comments on whether the system is resistant to shoulder surfing. The authentication trials took about 15 minutes each. Finally, the participant was requiring giving comments on whether the system is resistant to shoulder surfing or not.

Results

All participants achieved the criterion of ten correct logins. The participants accomplished the criterion of ten correct logins with 1-6 incorrect logins for a total of 30 incorrect logins across all participants. The mean percentage of correctness for password inputs among all participants was 76.72 percent with a standard deviation of 8.09. The mean time for correct password inputs was also analysed. The mean time for correct password inputs was 113.53 seconds with a standard deviation of 11.06. The range was 86-131 seconds. The result shows that the passwords are easy to remember with a mean percentage of correctness of 76.72. The mean time taken to complete a successful login process was approximately 1 minute. This result was an acceptable result. Figure 7-8 shows the mean time for input of 10 correct passwords. The graph indicates that there was a gentle downward trend in time to input the password. Table 7-6 show the comments of the 15 attacker on the following question:

Question: Is the system resistant to shoulder surfing?

![Figure 7-8 Mean times for input of 10 correct logins (N = 15)](image-url)
<table>
<thead>
<tr>
<th>Respondent</th>
<th>Their Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I have tried to guess the passwords while observing from behind the user. However, I was not successful. Thus, the systems appear to be resistant to shoulder surfing.</td>
</tr>
<tr>
<td>2</td>
<td>Numerous attempts to look at the password were not successful. I was not even able to gauge on the method being used.</td>
</tr>
<tr>
<td>3</td>
<td>I was not able to guess the passwords being used. I also have problem following what the user was doing. Therefore, I believe the system has been effective in prevention of shoulder surfing.</td>
</tr>
<tr>
<td>4</td>
<td>The use of picture passwords prevented me from correctly guessing the passwords as they seem to be a distraction. Finally, I give up for good after trying for 5 times.</td>
</tr>
<tr>
<td>5</td>
<td>Looking at the screen from behind, I was not able to correctly guess any of the passwords. Hence, I believe the system has met its main objective in ensuring resistant to shoulder surfing.</td>
</tr>
<tr>
<td>6</td>
<td>The system was successful in making my life difficult when I try to guess the passwords while observing from behind as I could not guess any of the passwords correctly.</td>
</tr>
<tr>
<td>7</td>
<td>Yes, it is very much resistant to shoulder surfing, mainly due to the numerous mechanism used when login in.</td>
</tr>
<tr>
<td>8</td>
<td>I always have problem following the users’ sequence. As a result, I believe the mechanism in place indeed helps in resistant to shoulder surfing.</td>
</tr>
<tr>
<td>9</td>
<td>I have used many type of systems and in my opinion, none are as resistant to shoulder surfing as this system. The use of pictures passwords is truly amazing and is certainly practical for certain real life application.</td>
</tr>
<tr>
<td>10</td>
<td>The login sequence is effective in ensuring resistant to shoulder surfing, as I have failed trying to look at the passwords from behind the user.</td>
</tr>
<tr>
<td>11</td>
<td>The application is surely resistant to shoulder surfing as I have problem looking at the passwords and finding any flaws of the system.</td>
</tr>
<tr>
<td>12</td>
<td>I tried to capture the user passwords when she tried to login, but I was not successful even if I look at it for multiple times. To me, this shows that it is highly resistant to shoulder surfing.</td>
</tr>
</tbody>
</table>

Table 7-6 Comments on Shoulder Surfing the system
7.8 Discussion and Conclusion

System testing is a vital part in a software development process to ensure that the program is working as expected. This chapter has provided the detail of activity performed in the testing phase including the various test cases used and the usability testing. Test cases were implemented to test the system whether it works as expected or not. It involved passwords, user IDs, login page, registration page and reset page.

In the usability testing, the system was tested in three graphical password aspects which are remembrance, hard to guess and resistant to shoulder surfing. The result shows that the passwords are easy to remember with a mean percentage of correctness of 76.72. This happen due to the fact that human is able to remember image better that text. (Shepard 1967) In this system, the passwords were in text but the text was always associated with images. Furthermore, first character of each password was given in each authentication session. To the user, the first character of the password is a hint that are familiar to him/her but not to the attacker.

In the aspect of hard to guess, the bigger password space makes the password more difficult to guess. In the usability testing, the password space was 94^{12}. The user needs to enter 4 passwords which are 3 pre-defined passwords and a fake password. With a bigger password space and a fake password randomly place among the pre-defined passwords, it make the password very hard to guess.

From the usability testing, a total 15 user’s comments show positive response in resistant to shoulder surfing. With these findings, we can conclude that the system has fulfilled the 3 important aspects of graphical password.

<table>
<thead>
<tr>
<th>Respondent</th>
<th>Their Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>The system seems to be resistant to shoulder surfing. Reason being attempts to obtain the passwords through observation of the login from ones back have not been successful. Even though I was able to observe most of the things that was done, I was not able to gauge the mechanism being used.</td>
</tr>
<tr>
<td>14</td>
<td>After observing the password entries for few times, I was not able to guess the passwords. I believe this shows the effectiveness of resistant to shoulder surfing.</td>
</tr>
<tr>
<td>15</td>
<td>The use of picture passwords make it hard for me to guess the passwords as the screen does not seem to show any clue on what the passwords was.</td>
</tr>
</tbody>
</table>
Chapter 8 Discussion

This chapter provides discussion on the result of this project. There are three sections in this chapter. The first section will specify the various problems encountered during development of the system. Section 8.2 and 8.3 will provide discussion on system strengths and weaknesses respectively. Finally, section 8.4 would provide a conclusion for chapter 8.

8.1 Problem Encounter

There are three major issues that were encountered during the development of Cued Recall Graphical Password System:

1. Lack of programming experience
 ASP.NET was used as the major programming language whereas Visual Basic and SQL were the minor ones being used during the system development process. I do not have much prior knowledge of these three programming languages. Thus, I have to learn up these programming languages from scratch and have to master some of the essential elements within a limited amount of time. This knowledge was mainly obtained from books and online materials.

2. There were occurrences of no-end loop during the software development process. Thus, there was a need to have a software modelling mechanism with capability to show iteration processes. With the adoption of the UML model, such iteration processes can easily be shown.

3. Lack of graphical design experience
 Graphical design is very important for a web page to attract user to use the system. Balancing between the quality of graphics and proper bandwidth management are quite tricky. Also, organization of the overall design of the web page is challenging. Thus, I have look at some graphical design books for ideas and to expand on my limited graphical design knowledge.

8.2 System strengths

The Cued Recall Graphical Password System has three strength points:

1. The system has adopted the proven cued recall method. Through presentation of the password first character, it clearly increases the memorability of password.

2. RSA encryption is used to encrypt the user’s password. This has increase the security level of the authentication process.
3. This system provides a password recovery module that allows users to recover password without calling the technical support staff.

8.3 System Limitations

The Cued Recall Graphical Password System has two weaknesses:

1. ASP.NET is resource hungry with respect to memory usage and execution time, which is due in large part to a longer code path. For Web-based applications, these limitations can be a serious problem as the application will be handling thousands of users’ queries per second. Thus, memory usage on the web server can be an issue for this system.

2. The system's user interface can be improve further to provide a professional feel to the user.

8.4 Research Contribution

The contribution of this project is the design of a graphical password system that extends the challenge-response paradigm to resist shoulder surfing. The user study support the overall concept which are remembrance, hard to guess and resistant to shoulder surfing. After a short period of explanation and training, most of them made no mistakes in using the system. Although the time to input password was longer compare to traditional textual password but this is the general drawback in challenge-response password system such as Passfaces and Déjà vu. One way that passwords input can be speed up is for users to become more skilful.

8.5 Epilogue

In summary, CRGPS was easy to learn and remember. After a short training session, most of the participants did not make any error when using the system.

The graphical password has been use as an alternative to the traditional text-based passwords. In this paper, we have conducted a comprehensive survey of existing graphical password schemas. A summarisation of current graphical password schemas is presented in Table 2-1. Although the main argument for graphical passwords is that people are better at memorizing graphical passwords than text-based passwords, the existing user studies are very limited and there is not yet convincing evidence to support this argument. Our preliminary analysis suggests that it is more difficult to break graphical passwords using the traditional attack methods such as brute force search, dictionary attack, or spy ware. However, since there is not yet wide deployment of
graphical password systems, the vulnerabilities of graphical passwords are still not fully understood.

CRGPS overcomes many of the existing problems of the traditional graphical password system. For instance, the Cued Recall Graphical Password System is shoulder surfing resistant, and it is using cued recall to increase user memorability. Some of the possible drawbacks of this system may include: Time consuming and difficult to use. Possible future improvements may include:

1. System administrator to be able to add, edit or delete the image categories.
2. System administrator to be able to adjust the length of the password to increase the difficulty in password guessing.

Overall, the current graphical password techniques are still immature. Much more research and user studies are needed for graphical password techniques to achieve higher level of maturity and usefulness.
BIBLIOGRAPHY

Shepard, R. N. 1967, ‘Recognition memory for words, sentences, and pictures’, *Journal of Verbal Learning and Verbal Behavior*, vol. 6, pp. 156-163.

Appendix A – CRGPS’s Source Code I (Login)

Home.aspx

```csharp
<% page language="VB" MasterPageFile="~/Default.master" %>

Login.aspx

```csharp
<% Page Language="VB" masterpagefile="~/SectionFunctions.master" %>
<mastertype virtualpath="~/SectionFunctions.master" %>
<Import Namespace="System.Data" %>
<Import Namespace="System.Data.SqlClient" %>
<Import Namespace="System.Net.Mail" %>
<Import Namespace="System" %>
<Import Namespace="System.Security.Cryptography" %>
<Import Namespace="System.Text" %>

<script runat="server">
 'assign all the images to array a

Sub Page_load()
 'put cursor into UserName textbox
 UserName.Focus()

 If Not IsPostBack Then
 Step1.Font.Bold = True
 End If

 'if maximum tries to login using username more than 3 times
 then redirect the user to failed login page
 If Session("UserNameNumTries") > Application("UserNameMaxTries") Then
 Response.Redirect("./username_failed_login.aspx")
 End If

 'if maximum tries to login using password more than 3 times
 then redirect the user to failed login page
 If Session("PasswordNumTries") > Application("PasswordMaxTries") Then
 Response.Redirect("./password_failed_login.aspx")
 End If
```
Function CreateDataSource() As ICollection
    Dim i As Integer
    Dim dt As DataTable
    Dim dr As DataRow
    Dim DecoyImage As New ArrayList

    ' create a DataTable
    dt = New DataTable
    dt.Columns.Add(New DataColumn("image_id", GetType(String)))

    ' shuffle array a
    Dim position As Integer
    Dim Temp As String
    Randomize()
    For i = (a.Length - 1) To 0 Step -1
        position = Int(((a.Length) * Rnd()) + 1) - 1
        Temp = a(i)
        a(i) = a(position)
        a(position) = Temp
    Next

    ' add array a into arraylist DecoyImage
    For i = 0 To 46
        DecoyImage.Add(a(i))
    Next

    Dim DataArray As New ArrayList
    Dim ConnStr As String
    ConnStr = "server=(local)\SQLEXPRESS;database=GPS;"
    ConnStr &= "Trusted_Connection=yes"
    Dim mySqlConn As New SqlConnection(ConnStr)

    ' open db connection and select password image1 from detail table and add it to arraylist DataArray
    mySqlConn.Open()
    Dim SQLSelect1 As String = "SELECT pass_image1 FROM detail WHERE UserName = \\
    & UserName.Text & \\
    ""
    Dim mySqlCmd1 As New SqlCommand(SQLSelect1, mySqlConn)
    Dim Result1 As Object
    Result1 = mySqlCmd1.ExecuteScalar()
    DataArray.Add(Trim(CType(Result1, String)))
    mySqlConn.Close()

    ' open db connection and select password image2 from detail table and add it to arraylist DataArray
    mySqlConn.Open()
    Dim SQLSelect2 As String = "SELECT pass_image2 FROM detail WHERE UserName = \\
    & UserName.Text & \\
    ""
    Dim mySqlCmd2 As New SqlCommand(SQLSelect2, mySqlConn)
    Dim Result2 As Object
    Result2 = mySqlCmd2.ExecuteScalar()
    DataArray.Add(Trim(CType(Result2, String)))
    mySqlConn.Close()

    ' open db connection and select password image3 from detail table and add it to arraylist DataArray
    mySqlConn.Open()
    Dim SQLSelect3 As String = "SELECT pass_image3 FROM detail
WHERE UserName = '"' & UserName.Text & '"'
Dim mySqlCmd3 As New SqlCommand(SQLSelect3, mySqlConn)
Dim Result3 As Object
Result3 = mySqlCmd3.ExecuteScalar()
DataArray.Add(Trim(CType(Result3, String)))
mySqlConn.Close()

' open db connection and select password image4 from detail
table and add it to arraylist DataArray
mySqlConn.Open()
Dim SQLSelect4 As String = "SELECT pass_image4 FROM detail
WHERE UserName = '"' & UserName.Text & '""
Dim mySqlCmd4 As New SqlCommand(SQLSelect4, mySqlConn)
Dim Result4 As Object
Result4 = mySqlCmd4.ExecuteScalar()
DataArray.Add(Trim(CType(Result4, String)))
mySqlConn.Close()

' open db connection and select password image5 from detail
table and add it to arraylist DataArray
mySqlConn.Open()
Dim SQLSelect5 As String = "SELECT pass_image5 FROM detail
WHERE UserName = '"' & UserName.Text & '""
Dim mySqlCmd5 As New SqlCommand(SQLSelect5, mySqlConn)
Dim Result5 As Object
Result5 = mySqlCmd5.ExecuteScalar()
DataArray.Add(Trim(CType(Result5, String)))
mySqlConn.Close()

'shuffle arraylist DataArray
Randomize()
For i = 4 To 0 Step -1
    position = Int(((5 * Rnd()) + 1) - 1)
    Temp = DataArray(i)
    DataArray(i) = DataArray(position)
    DataArray(position) = Temp
Next

' Assign DataArray(0) until DataArray(4) to PI1 until PI5
PI1.Text = DataArray(0)
PI2.Text = DataArray(1)
PI3.Text = DataArray(2)
PI4.Text = DataArray(3)
PI5.Text = DataArray(4)

' check if PasswordImage and DecoyImage are the same or not
to prevent redundancy of image
For i = 0 To 46
    If Trim(DecoyImage(i)) = Trim(PI1.Text) Then
        DecoyImage(i) = a(47)
    ElseIf Trim(DecoyImage(i)) = Trim(PI2.Text) Then
        DecoyImage(i) = a(48)
    ElseIf Trim(DecoyImage(i)) = Trim(PI3.Text) Then
        DecoyImage(i) = a(49)
    ElseIf Trim(DecoyImage(i)) = Trim(PI4.Text) Then
        If a(50) <> PI1.Text And a(50) <> PI2.Text And a(50) <> PI3.Text Then
            DecoyImage(i) = a(50)
        End If
    ElseIf Trim(DecoyImage(i)) = Trim(PI5.Text) Then
        If a(51) <> PI1.Text And a(51) <> PI2.Text And a(51) <> PI3.Text Then
            DecoyImage(i) = a(51)
        End If
    End If
End For
DecoyImage(i) = a(51)

   End If
   End If
Next

'Add PI1 until PI3 to DecoyImage
DecoyImage.Add(PI1.Text)
DecoyImage.Add(PI2.Text)
DecoyImage.Add(PI3.Text)

'shuffle the DecoyImage
Randomize()
For i = 49 To 0 Step -1
   position = Int((50 * Rnd()) + 1) - 1
   Temp = DecoyImage(i)
   DecoyImage(i) = DecoyImage(position)
   DecoyImage(position) = Temp
Next

'add DecoyImage to DataTable
For i = 0 To 49
   dr = dt.NewRow()
   dr(0) = DecoyImage(i)
   dt.Rows.Add(dr)
Next

'return a DataView to the DataTable
CreateDataSource = New DataView(dt)
End Function

Sub DecryptUserPassword()
   Dim ConnStr As String
   ConnStr = "server=(local)\SQLEXPRESS;database=GPS;"
   ConnStr &= "Trusted_Connection=yes"
   Dim mySqlConn As New SqlConnection(ConnStr)

   'get password code for Password Image1
   Dim SQLSelect1 As String = "SELECT pass_code FROM password "
   SQLSelect1 &= "WHERE UserName='" & UserName.Text & "' AND pass_image='" & PI1.Text & "'
   mySqlConn.Open()
   Dim mySqlCmd1 As New SqlCommand(SQLSelect1, mySqlConn)
   Dim Result1 As Object
   Result1 = mySqlCmd1.ExecuteScalar()
   mySqlConn.Close()

   'get password code for Password Image2
   Dim SQLSelect2 As String = "SELECT pass_code FROM password "
   SQLSelect2 &= "WHERE UserName='" & UserName.Text & "' AND pass_image='" & PI2.Text & "'
   mySqlConn.Open()
   Dim mySqlCmd2 As New SqlCommand(SQLSelect2, mySqlConn)
   Dim Result2 As Object
   Result2 = mySqlCmd2.ExecuteScalar()
   mySqlConn.Close()

   'get password code for Password Image3
   Dim SQLSelect3 As String = "SELECT pass_code FROM password "
   SQLSelect3 &= "WHERE UserName='" & UserName.Text & "' AND pass_image='" & PI3.Text & "'
   mySqlConn.Open()
Dim mySqlCmd3 As New SqlCommand(SQLSelect3, mySqlConn)
Dim Result3 As Object
Result3 = mySqlCmd3.ExecuteScalar()
mySqlConn.Close()

'get password code for Password Image4
Dim SQLSelect4 As String = "SELECT pass_code FROM password " & _
& "WHERE UserName='" & UserName.Text & "' AND pass_image='" & PI4.Text & "'
mySqlConn.Open()
Dim mySqlCmd4 As New SqlCommand(SQLSelect4, mySqlConn)
Dim Result4 As Object
Result4 = mySqlCmd4.ExecuteScalar()
mySqlConn.Close()

'get password code for Password Image5
Dim SQLSelect5 As String = "SELECT pass_code FROM password " & _
& "WHERE UserName='" & UserName.Text & "' AND pass_image='" & PI5.Text & "'
mySqlConn.Open()
Dim mySqlCmd5 As New SqlCommand(SQLSelect5, mySqlConn)
Dim Result5 As Object
Result5 = mySqlCmd5.ExecuteScalar()
mySqlConn.Close()

Try
'Create a UnicodeEncoder to convert between byte array and string.
Dim ByteConverter As New UnicodeEncoding()

'Create byte arrays to hold decrypted data.
Dim decryptedData1() As Byte
Dim decryptedData2() As Byte
Dim decryptedData3() As Byte
Dim decryptedData4() As Byte
Dim decryptedData5() As Byte

'get user's private key from db
Dim SQLSelect6 As String = "SELECT private_key FROM detail " & _
& "WHERE UserName='" & UserName.Text & "'
mySqlConn.Open()
Dim mySqlCmd6 As New SqlCommand(SQLSelect6, mySqlConn)
Dim Result6 As Object
Result6 = mySqlCmd6.ExecuteScalar()
mySqlConn.Close()

Dim privateKey As String = Trim(CType(Result6, String))

'load the private key
Dim RSA1 As RSACryptoServiceProvider = New RSACryptoServiceProvider()
RSA1.FromXmlString(privateKey)

'create byte arrays to hold converted password code
Dim getStr1() As Byte
Dim getStr2() As Byte
Dim getStr3() As Byte
Dim getStr4() As Byte
Dim getStr5() As Byte

'convert the password code from string to byte arrays
getStr1 = System.Convert.FromBase64String(Trim(CType(Result1,
Login.aspx, continued

```vbnet
String
))
getStr2 = System.Convert.FromBase64String(Trim(CType(Result2, String)))
getStr3 = System.Convert.FromBase64String(Trim(CType(Result3, String)))
getStr4 = System.Convert.FromBase64String(Trim(CType(Result4, String)))
getStr5 = System.Convert.FromBase64String(Trim(CType(Result5, String)))

'Pass the data to DECRYPT, the private key information
'(using RSACryptoServiceProvider.ExportParameters(true),
'and a boolean flag specifying no OAEP padding.
decryptedData1 = RSA1.Decrypt(getStr1, False)
decryptedData2 = RSA1.Decrypt(getStr2, False)
decryptedData3 = RSA1.Decrypt(getStr3, False)
decryptedData4 = RSA1.Decrypt(getStr4, False)
decryptedData5 = RSA1.Decrypt(getStr5, False)

'create string to hold converted decrypted byte arrays
Dim str1 As String = ByteConverter.GetString(decryptedData1)
Dim str2 As String = ByteConverter.GetString(decryptedData2)
Dim str3 As String = ByteConverter.GetString(decryptedData3)
Dim str4 As String = ByteConverter.GetString(decryptedData4)
Dim str5 As String = ByteConverter.GetString(decryptedData5)

'assign combination of password first letter and the
less of the password to a respective label
decryt1.Text = str1
decryt2.Text = str2
decryt3.Text = str3
decryt4.Text = str4
decryt5.Text = str5

'Catch exception in case the decryption did not succeed.
Catch e As ArgumentNullException
Message1.Text += "Decryption failed."
Catch e As CryptographicException
Message1.Text += e.ToString()
End Try
End Sub
Sub CreatePasswordFirstLetter()

DecrytUserPassword()

'assign the first letter of the decrypted password to 5 labels
```
'create a fake password
Dim positionA As Integer
Dim tempA As String
Dim i As Integer
Randomize()
For i = (a.Length - 1) To 0 Step -1
    positionA = Int((52 * Rnd()) + 1) - 1
    tempA = a(i)
    a(i) = a(positionA)
    a(positionA) = tempA
Next

'to get the first letter of password randomly
Dim b() As String = {c4.Text, c5.Text, c6.Text, a(0)}
Dim PasswordClue As New ArrayList
'shuffle array b
Dim positionB As Integer
Dim TempB As String
Randomize()
For i = (b.Length - 1) To 0 Step -1
    positionB = Int(((PositionB * Rnd()) + 1) - 1
    TempB = b(i)
    b(i) = b(positionB)
    b(positionB) = TempB
Next

'add array b into arraylist PasswordClue
For i = 0 To 3
    PasswordClue.Add(b(i))
Next

'assign the first letter of the passwords to password label
PasswordLabel1.Text = PasswordClue(0)
PasswordLabel2.Text = PasswordClue(1)
PasswordLabel3.Text = PasswordClue(2)
PasswordLabel4.Text = PasswordClue(3)
End Sub

Sub BindList()
'bind dataview to titlelist
titlelist.DataSource = CreateDataSource()
titlelist.DataBind()
End Sub

Sub Next_Click(ByVal Sender As Object, ByVal e As EventArgs)
    Select Case Sender.Parent.ID
    Case "Page1"
        Dim ConnStr As String
ConnStr = "server=(local)\SQLExpress;database=GPS;"
ConnStr &= "Trusted_Connection=yes"
Dim mySqlConn As New SqlConnection(ConnStr)

'open db connection and check existence of UserName
mySqlConn.Open()
Dim SQLSelect1 As String = "SELECT Count(*) FROM detail " 
& "WHERE UserName = " & UserName.Text & ""
Dim mySqlCmd1 As New SqlCommand(SQLSelect1, 
mySqlConn)
Dim Result1 As Object
Result1 = mySqlCmd1.ExecuteScalar()
mySqlConn.Close()

testing.Text = CType(Result1, String)

'if UserName do exist then display Page2 else 
display message "invalid username"
If testing.Text = "1" Then
    'display images
    BindList()
    CreatePasswordFirstLetter()
    Page1.Visible = False
    Step1.Font.Bold = False
    Page2.Visible = True
    Step2.Font.Bold = True
    PasswordText1.Focus()
ElseIf testing.Text = "0" Then
    Session("UserNameNumTries") = 
    Session("UserNameNumTries") + 1
    If Session("UserNameNumTries") >= 
    Application("UserNameMaxTries") Then
        Response.Redirect("./username_failed_login.aspx" 
    )
    Else
        invalid.Text = "The user name was not found. 
        Please try again."
        UserName.Text = ""
        UserName.Focus()
    End If
    End If

Dim x As Date = Now
    time1.Text = x
Case "Page2"
    DecrytUserPassword()

Dim ConnStr As String
ConnStr = "server=(local)\SQLExpress;database=GPS;"
ConnStr &= "Trusted_Connection=yes"
Dim mySqlConn As New SqlConnection(ConnStr)

'get user's password
Dim join1 As String = PasswordLabel1.Text + 
    PasswordText1.Text
Dim join2 As String = PasswordLabel2.Text + 
    PasswordText2.Text
Dim join3 As String = PasswordLabel3.Text + 
    PasswordText3.Text
Dim join4 As String = PasswordLabel4.Text + 
    PasswordText4.Text
'set control value
'c1.Value = "0"
c2.Value = "0"
c3.Value = "0"
c9.Value = "0"

'get first four letter of the password save in db
Dim pw1 As String = (decryt1.Text).Remove(4, ((decryt1.Text).Length - 1) - 3)
Dim pw2 As String = (decryt2.Text).Remove(4, ((decryt2.Text).Length - 1) - 3)
Dim pw3 As String = (decryt3.Text).Remove(4, ((decryt3.Text).Length - 1) - 3)
Dim pw5 As String = (decryt5.Text).Remove(4, ((decryt5.Text).Length - 1) - 3)

'check if the decryted password similar with the user's key in password for the first password
If String.Compare(join1, pw1) = 0 Or
   String.Compare(join1, pw2) = 0 Or
   String.Compare(join1, pw3) = 0 Or
   String.Compare(join1, pw4) = 0 Or
   String.Compare(join1, pw5) = 0 Then
   c1.Value = "1"
End If

'check if the decryted password similar with the user's key in password for the second password
If String.Compare(join2, pw1) = 0 Or
   String.Compare(join2, pw2) = 0 Or
   String.Compare(join2, pw3) = 0 Or
   String.Compare(join2, pw4) = 0 Or
   String.Compare(join2, pw5) = 0 Then
   c2.Value = "1"
End If

'check if the decryted password similar with the user's key in password for the third password
If String.Compare(join3, pw1) = 0 Or
   String.Compare(join3, pw2) = 0 Or
   String.Compare(join3, pw3) = 0 Or
   String.Compare(join3, pw4) = 0 Or
   String.Compare(join3, pw5) = 0 Then
   c3.Value = "1"
End If

'check if the decryted password similar with the user's key in password for the forth password
If String.Compare(join4, pw1) = 0 Or
   String.Compare(join4, pw2) = 0 Or
   String.Compare(join4, pw3) = 0 Or
   String.Compare(join4, pw4) = 0 Or
   String.Compare(join4, pw5) = 0 Then
   c9.Value = "1"
End If

'fetch user's email address from detail table
Dim SQLSelect2 As String = "SELECT e_mail FROM detail WHERE UserName='" & UserName.Text & "'"
mySqlConn.Open()
Dim mySqlCmd2 As New SqlCommand(SQLSelect2, mySqlConn)
Dim Result2 As Object
Result2 = mySqlCmd2.ExecuteScalar()
mySqlConn.Close()

' to get the first image
Dim SQLSelect3 As String = "SELECT pass_image1 FROM detail " _
& "WHERE UserName='" & UserName.Text & "'
mySqlConn.Open()
Dim mySqlCmd3 As New SqlCommand(SQLSelect3, mySqlConn)
Dim Result3 As Object
Result3 = mySqlCmd3.ExecuteScalar()
mySqlConn.Close()

' to get the second image
Dim SQLSelect4 As String = "SELECT pass_image2 FROM detail " _
& "WHERE UserName='" & UserName.Text & "'
mySqlConn.Open()
Dim mySqlCmd4 As New SqlCommand(SQLSelect4, mySqlConn)
Dim Result4 As Object
Result4 = mySqlCmd4.ExecuteScalar()
mySqlConn.Close()

' to get the third image
Dim SQLSelect5 As String = "SELECT pass_image3 FROM detail " _
& "WHERE UserName='" & UserName.Text & "'
mySqlConn.Open()
Dim mySqlCmd5 As New SqlCommand(SQLSelect5, mySqlConn)
Dim Result5 As Object
Result5 = mySqlCmd5.ExecuteScalar()
mySqlConn.Close()

' to get the forth image
Dim SQLSelect6 As String = "SELECT pass_image4 FROM detail " _
& "WHERE UserName='" & UserName.Text & "'
mySqlConn.Open()
Dim mySqlCmd6 As New SqlCommand(SQLSelect6, mySqlConn)
Dim Result6 As Object
Result6 = mySqlCmd6.ExecuteScalar()
mySqlConn.Close()

' to get the fifth image
Dim SQLSelect7 As String = "SELECT pass_image5 FROM detail " _
& "WHERE UserName='" & UserName.Text & "'
mySqlConn.Open()
Dim mySqlCmd7 As New SqlCommand(SQLSelect7, mySqlConn)
Dim Result7 As Object
Result7 = mySqlCmd7.ExecuteScalar()
mySqlConn.Close()

' check if the PasswordText is correct then display
message "Congratulations! Login Successfully!! else display message "Wrong Password!! Please try again!!"
If (c1.Value = "1" And c2.Value = "1" And c3.Value = "1" And c9.Value = "0") Or (c1.Value = "1" And c2.Value = "1" And c3.Value = "0" And c9.Value = "1") Or (c1.Value = "1" And c2.Value = "0" And c3.Value = "1" And c9.Value = "1") Or (c1.Value = "0" And c2.Value = "1" And c3.Value = "1" And c9.Value = "1") Then
' if the user is administrator then display the user's information from the database
If UserName.Text = "Admin" Then
  Page2.Visible = False
  Step2.Font.Bold = False
  Page4.Visible = True
Else
  Page2.Visible = False
  Step2.Font.Bold = False
  Page3.Visible = True
  Step3.Font.Bold = True
  ReviewUserNameText.Text = UserName.Text
  Label1.Text = "You have successfully entered our site. Welcome! Take your time and " & "have fun!"
  Label2.Visible = False
End If
'
' add 1 to the success column in the database because user had successfully login
Dim SQLSelect8 As String = "SELECT success FROM detail " & "WHERE UserName='" & UserName.Text & "'
mySqlConn.Open()
Dim mySqlCmd8 As New SqlCommand(SQLSelect8, mySqlConn)
Dim Result8 As Object
Result8 = mySqlCmd8.ExecuteScalar()
mySqlConn.Close()
Dim s_login As Integer = CType(Result8, Integer)
s_login += 1
Dim SQLUpdate1 As String = "UPDATE detail SET success='" & s_login & "' WHERE " & "UserName='" & UserName.Text & "'
mySqlConn.Open()
Dim mySqlCommand9 As New SqlCommand(SQLUpdate1, mySqlConn)
Dim mySqlDR1 As SqlDataReader
mySqlDR1 = mySqlCommand9.ExecuteReader()
mySqlConn.Close()
'
' calculate user's login time
Dim y As Date = Now
Dim yminute As Integer = DatePart(DateInterval.Minute, y)
Dim ysecond As Integer = DatePart(DateInterval.Second, y)
Dim x As Date = CDate(time1.Text)
Dim xminute As Integer = DatePart(DateInterval.Minute, x)
Dim xsecond As Integer = 
DatePart(DateInterval.Second, x)
Dim dminute As Integer
Dim dsecond As Integer

Dim myDS As New DataSet()

If yminute = xminute Then
dminute = 0
dsecond = ysecond - xsecond
ElseIf yminute > xminute Then
If ysecond > xsecond Then
dminute = yminute - xminute
dsecond = ysecond - xsecond
ElseIf ysecond < xsecond Then
dminute = yminute - xminute - 1
dsecond = (60 + ysecond) - xsecond
ElseIf ysecond = xsecond Then
dminute = yminute - xminute

dsecond = 0
ElseIf yminute > xminute Then
If ysecond > xsecond Then
dminute = yminute - xminute

dsecond = ysecond - xsecond
ElseIf ysecond < xsecond Then
dminute = yminute - xminute

dsecond = (60 + ysecond) - xsecond
ElseIf ysecond = xsecond Then
dminute = yminute - xminute

dsecond = 0
End If
End If

'add a record to database
mySqlConn.Open()
Dim SQLSelect9 As String = "SELECT Count(*) FROM 
login_time " 
& "WHERE UserName = '" & UserName.Text & "]'"
Dim mySqlCmd12 As New SqlCommand(SQLSelect9, 
mySqlConn)
Dim Result9 As Object
Result9 = mySqlCmd12.ExecuteScalar()
mySqlConn.Close()
Dim id As Integer = CType(Result9, Integer) + 1

Dim SQLInsert1 As String = "INSERT INTO 
[login_time] ([duration_id],[UserName], 
[minute], [second]) VALUES ('" & id & "]', '" & 
UserName.Text & "]', '" & dminute & "]', '" &
dsecond & "]'"
mySqlConn.Open()
Dim mySqlCommand11 As New SqlCommand(SQLInsert1, 
mySqlConn)
Dim mySqlDR3 As SqlDataReader
mySqlDR3 = mySqlCommand11.ExecuteReader()
mySqlConn.Close()
Else
' increase 1 to failed login for unsuccefull login
Session("PasswordNumTries") = Session("PasswordNumTries") + 1
'sent email to user if failed login more than 3 times
If Session("PasswordNumTries") >=
Application("PasswordMaxTries") Then
' Password recovery
Dim Mail As New
MailMessage("l_hooili@yahoo.com", 
CType(Result2, String))
Dim body As String
Dim sb As New StringBuilder()
Login.aspx, continued

```
Mail.Subject = "Password Recovery"
body = "Password 1 = " & decryt1.Text &
" Password 2 = " & decryt2.Text &
" Password 3 = " & decryt3.Text &
" Password 4 = " & decryt4.Text &
" Password 5 = " & decryt5.Text

'build the email message body.
sb.Append("The following email was sent to
you from the Graphical Password Recovery ")
sb.Append(vbCrLf)
sb.Append(vbCrLf)
sb.Append("SUBJECT: ")
sb.Append("Password Recovery")
sb.Append(vbCrLf)
sb.Append(vbCrLf)
sb.Append("MESSAGE: ")
sb.Append(body)
sb.Append(vbCrLf)

Mail.Body = sb.ToString

'build the attachments
Dim arlAttachments As New ArrayList
arlAttachments.Add(New
Attachment("C:\Documents and Settings\TYS\My
Documents\" _
& "Visual Studio 2005\WebSites\Home Page
26Mar08\Functions\images\" & _
Trim(CType(Result3, String)) & ".jpg")
arlAttachments.Add(New
Attachment("C:\Documents and Settings\TYS\My
Documents\" _
& "Visual Studio 2005\WebSites\Home Page
26Mar08\Functions\images\" & _
Trim(CType(Result4, String)) & ".jpg")
arlAttachments.Add(New
Attachment("C:\Documents and Settings\TYS\My
Documents\" _
& "Visual Studio 2005\WebSites\Home Page
26Mar08\Functions\images\" & _
Trim(CType(Result5, String)) & ".jpg")
arlAttachments.Add(New
Attachment("C:\Documents and Settings\TYS\My
Documents\" _
& "Visual Studio 2005\WebSites\Home Page
26Mar08\Functions\images\" & _
Trim(CType(Result6, String)) & ".jpg")
arlAttachments.Add(New
Attachment("C:\Documents and Settings\TYS\My
Documents\" _
& "Visual Studio 2005\WebSites\Home Page
26Mar08\Functions\images\" & _
Trim(CType(Result7, String)) & ".jpg")

If Not IsNothing(arlAttachments) Then
 Dim mailAttachment As Attachment
 For Each mailAttachment In
 arlAttachments
 Mail.Attachments.Add(mailAttachment)
 Next
End If
```
'try to sent email
Try
  Dim client As New
  SmtpClient("localhost")
  client.Send(Mail)
  Label2.Text = Label2.Text + "Your email has been successfully sent!"
Catch exp As Exception
  Label2.Text = Label2.Text + "The following problem occurred when attempting to " & _
  "send your email: " & exp.Message
End Try

'direct user to failed login page
Response.Redirect("./password_failed_login.aspx")
End If

'display message when password not found
Label2.Text = "The password was not found. Please try again."
PasswordText1.Focus()

Dim SQLSelect9 As String = "SELECT failure FROM detail " _
  & "WHERE UserName='" & UserName.Text & "'"
mySqlConn.Open()
Dim mySqlCmd9 As New SqlCommand(SQLSelect9, mySqlConn)
Dim Result9 As Object
Result9 = mySqlCmd9.ExecuteScalar()
mySqlConn.Close()

'add a record to database, increase 1 to failed login
Dim f_login As Integer = CType(Result9, Integer)
f_login += 1

Dim SQLUpdate2 As String = "UPDATE detail SET failure='" & f_login & "' WHERE UserName='" & UserName.Text & "'"
mySqlConn.Open()
Dim mySqlCommand10 As New SqlCommand(SQLUpdate2, mySqlConn)
Dim mySqlDR2 As SqlDataReader
mySqlDR2 = mySqlCommand10.ExecuteReader()
mySqlConn.Close()
End If
End Select
End Sub

Sub Previous_Click(ByVal Sender As Object, ByVal e As EventArgs)
  Select Case Sender.Parent.ID
  Case "Page2"
    Page2.Visible = False
    Step2.Font.Bold = False
    Page1.Visible = True
    Step1.Font.Bold = True
  Case "Page3"
    Page3.Visible = False
Step3.Font.Bold = False
Page2.Visible = True
Step2.Font.Bold = True
End Select
End Sub
</script>

<asp:content id="Content1" contentplaceholderid="IntroText" runat="server">
  <asp:Label ID="LoginWiz" runat="server" Font-Bold="True" Font-Names="Verdana" Font-Size="16pt" Text="Login Wizard" BorderWidth="7px" BorderStyle="Ridge" Width="100%"></asp:Label><br />
  <asp:Label ID="Step1" runat="server" Font-Names="Verdana" Text="Step 1: Enter your User Name."></asp:Label><br />
  <asp:Label ID="Step2" runat="server" Font-Names="Verdana" Text="Step 2: Enter your password code."></asp:Label><br />
  <asp:Label ID="Step3" runat="server" Font-Names="Verdana" Text="Step 3: Result."></asp:Label><br />
  <asp:Label ID="time1" runat="server"></asp:Label><br />
  <asp:Label ID="decryt1" visible="false" runat="server" />
  <asp:Label ID="decryt2" visible="false" runat="server" />
  <asp:Label ID="decryt3" visible="false" runat="server" />
  <asp:Label ID="decryt4" visible="false" runat="server" />
  <asp:Label ID="decryt5" visible="false" runat="server" />
</asp:content>

<asp:content id="Content2" contentplaceholderid="FunctionRequire" runat="server">
  <asp:Panel ID="Page1" BackColor ="silver" Width ="400px" runat="server">
    <asp:Label ID="invalid" runat="server" />
    <table align ="center">
      <tr>
        <td>
          <asp:Label ID="UserNameLabel" runat="server" Text="Username: "></asp:Label></td>
        <td>
          <asp:TextBox ID="UserName" MaxLength ="30" runat="server"></asp:TextBox>
        </td>
      </tr>
      <tr>
        <td colspan ="2">
          <asp:HyperLink ID="registration" text="New User?" NavigateUrl ="~/Functions/Registration.aspx" ForeColor ="Blue" runat="server"></asp:HyperLink>
          <asp:HyperLink ID="reset" text="Reset?" NavigateUrl ="~/Functions/Reset.aspx" ForeColor ="Blue" runat="server"></asp:HyperLink>
        </td>
      </tr>
    </table>
  </asp:Panel>
</asp:content>
Login.aspx, continued

```
<tr>
 <td colspan="2" align="center">
 <asp:Button ID="P1Previous" runat="server"
 Enabled="False" Text="Previous"
 OnClick="Previous_Click"
 onmouseover="this.style.backgroundColor='yellow'"
 onmouseout="this.style.backgroundColor='buttonface'" />
 <asp:Button ID="P1Next" runat="server"
 Text="Next" OnClick="Next_Click"
 onmouseover="this.style.backgroundColor='yellow'"
 onmouseout="this.style.backgroundColor='buttonface'" />
 <input id="P1Reset" type="reset" runat="server"
 value="Clear"
 onmouseover="this.style.backgroundColor='yellow'"
 onmouseout="this.style.backgroundColor='buttonface'" />
 </td>
</tr>
</table>
<asp:Label ID="testing" visible="false" runat="server" />
</asp:Panel>
<asp:Panel ID="Page2" BackColor="#silver" Width="#400px"
 runat="server" Visible="False">
 <table width="#100%">
 <tr>
 <td>
 <asp:datalist id="titlelist" repeatcolumns="#10"
 gridlines="both" cellpadding="#5" runat="server">
 <ItemTemplate>
 <table style="font: 10pt verdana">
 <tr>
 <td valign="top">
 <asp:ImageButton ID="ImageButton1"
 ImageAlign="top" ImageURL='"%#DataBinder.Eval(Container.DataItem, "image_id", "images/{0}.jpg")" %"
 runat="server"
 CssClass="removeBorder"
 BorderWidth="#0.2cm"
 onmouseover="this.className='applyBorder'"
 onmouseout="this.className='removeBorder'" CommandName="Select" />
 </td>
 </tr>
 </table>
 </ItemTemplate>
 </asp:datalist>
 </td>
 </tr>
 </table>
</asp:Panel>
```

144
<asp:DataList>
</asp:DataList>
<tr align="center">
<td>
<asp:Label ID="Password1" Text="Password 1: " runat="server" />
<asp:Label ID="PasswordLabel1" runat="server" />
<asp:TextBox ID="PasswordText1" TextMode="Password" runat="server" />
<asp:RequiredFieldValidator ID="Password1Validator" ControlToValidate="PasswordText1" Display="Dynamic" ErrorMessage="Password 1 is Required" Font-Size="10pt" Font-Faces="verdana" runat="server" />
<asp:RegularExpressionValidator id="Password1RegularExpressionValidator" ControlToValidate="PasswordText1" ValidationExpression="^[\w-]{3}$" Display="Static" Font-Faces="verdana" Font-Size="10pt" runat="server" />
Must be in form: XXX
</asp:RegularExpressionValidator>
</td>
</tr>
<tr align="center">
<td>
<asp:Label ID="Password2" Text="Password 2: " runat="server" />
<asp:Label ID="PasswordLabel2" runat="server" />
<asp:TextBox ID="PasswordText2" TextMode="Password" runat="server" />
<asp:RequiredFieldValidator ID="Password2Validator" ControlToValidate="PasswordText2" Display="Dynamic" ErrorMessage="Password 2 is Required" Font-Size="10pt" Font-Faces="verdana" runat="server" />
<asp:RegularExpressionValidator id="Password2RegularExpressionValidator" ControlToValidate="PasswordText2" ValidationExpression="^[\w-]{3}$" Display="Static" Font-Faces="verdana" Font-Size="10pt" runat="server" />
Must be in form: XXX
</asp:RegularExpressionValidator>
</td>
</tr>
<tr align="center">
<td>
<asp:Label ID="Password3" Text="Password 3: " runat="server" />
<asp:Label ID="PasswordLabel3" runat="server" />
<asp:TextBox ID="PasswordText3" TextMode="Password" runat="server" />
<asp:RequiredFieldValidator ID="Password3Validator" ControlToValidate="PasswordText3" runat="server" />
</td>
</tr>
Login.aspx, continued

```html
<asp:Label ID="Password4" Text="Password 4: " runat="server"></asp:Label>
<asp:TextBox ID="PasswordText4" TextMode="Password" runat="server"></asp:TextBox>
<asp:RequiredFieldValidator ID="Password4Validator" ControlToValidate="PasswordText4" Display="Dynamic" ErrorMessage="Password 4 is Required" Font-Size="10pt" Font-Names="Verdana" runat="server">
 Must be in form: XXX
</asp:RequiredFieldValidator>
```

```html
<asp:RegularExpressionValidator id="Password3RegularExpressionValidator" ControlToValidate="PasswordText3" ValidationExpression="^[\w-]{3}$" Display="Static" Font-Names="Verdana" Font-Size="10pt" runat="server">
Must be in form: XXX
</asp:RegularExpressionValidator>
```
<asp:Panel ID="Page3" BackColor="#silver" Width="600px" runat="server" Visible="False">
  <table align="center">
    <tr>
      <td align="center">
        <asp:Label ID="ReviewUserName" runat="server" Text="User Name: "></asp:Label>
        <asp:Label ID="ReviewUserNameText" runat="server" ></asp:Label>
      </td>
    </tr>
    <tr>
      <td colspan="2" align="center">
        <asp:Button ID="P3Previous" runat="server" Text="Previous" OnClick ="Previous_Click"
          Enabled="false"
          onmouseover="this.style.backgroundColor='yellow'"
          onmouseout="this.style.backgroundColor='buttonface'" />
        <asp:Button ID="P3Next" runat="server" Text="Next" OnClick ="Next_Click"
          Enabled="false"
          onmouseover="this.style.backgroundColor='yellow'"
          onmouseout="this.style.backgroundColor='buttonface'" />
        <input id="P3Reset" type="reset" disabled
          runat="server" value="Clear"
          onmouseover="this.style.backgroundColor='yellow'"
          onmouseout="this.style.backgroundColor='buttonface'" />
      </td>
    </tr>
    <tr>
      <td align="center">
        <asp:Label ID="Label1" runat="server"></asp:Label>
      </td>
    </tr>
  </table>
</asp:Panel>
<asp:Panel ID="Page4" BackColor="#silver" Width="400px" visible="false" runat="server">
  <table align="center">
    <tr>
      <!-- Additional rows and columns can be added here -->
    </tr>
  </table>
</asp:Panel>
<td>
<asp:GridView ID="GridView1" AllowSorting="true"
AllowPaging="true" Runat="server"
DataSourceID="SqlDataSource1"
AutoGenerateEditButton="true"
DataKeyNames="UserName"
AutoGenerateColumns="False">
<Columns>
<asp:BoundField HeaderText="UserName"
DataField="UserName"
SortExpression="UserName" />
<asp:BoundField HeaderText="Name"
DataField="name" SortExpression="name" />
<asp:BoundField HeaderText="IC"
DataField="IC" SortExpression="IC" />
<asp:BoundField HeaderText="Gender"
DataField="gender" SortExpression="gender" />
<asp:BoundField HeaderText="Race"
DataField="race" SortExpression="race" />
<asp:BoundField HeaderText="Address"
DataField="address" SortExpression="address" />
<asp:BoundField HeaderText="State"
DataField="state" SortExpression="state" />
<asp:BoundField HeaderText="Postcode"
DataField="postcode"
SortExpression="postrcode" />
<asp:BoundField HeaderText="Country"
DataField="country"
SortExpression="country" />
<asp:BoundField HeaderText="E-mail"
DataField="e_mail" SortExpression="e_mail" />
<asp:BoundField HeaderText="Password Image 1"
DataField="pass_image1"
SortExpression="pass_image1" />
<asp:BoundField HeaderText="Password Image 2"
DataField="pass_image2"
SortExpression="pass_image2" />
<asp:BoundField HeaderText="Password Image 3"
DataField="pass_image3"
SortExpression="pass_image3" />
<asp:BoundField HeaderText="Password Image 4"
DataField="pass_image4"
SortExpression="pass_image4" />
<asp:BoundField HeaderText="Password Image 5"
DataField="pass_image5"
SortExpression="pass_image5" />
<asp:BoundField HeaderText="Success Login"
DataField="success"
SortExpression="success" />
<asp:BoundField HeaderText="Failure Login"
DataField="failure"
SortExpression="failure" />
</Columns>
</asp:GridView>
<asp:SqlDataSource ID="SqlDataSource1"
Runat="server" SelectCommand="SELECT [UserName],
[name], [IC], [gender], [race],[address],[state],
[postcode], [country], [e_mail],
[pass_image1],[pass_image2],
[pass_image3],[pass_image4],[pass_image5],
[success], [failure] FROM [detail]"
Login.aspx, continued

UpdateCommand="UPDATE [detail] SET [UserName] = @UserName, [name] = @name, [IC] = @IC, [address] = @address, [state] = @state, [postcode] = @postcode, [country] = @country, [e_mail] = @e_mail, [pass_image1] = @pass_image1, [pass_image2] = @pass_image2, [pass_image3] = @pass_image3, [pass_image4] = @pass_image4, [pass_image5] = @pass_image5, [success] = @success, [failure] = @failure WHERE [UserName] = @UserName"
ConnectionString="<%@ ConnectionStrings:GPS %>
</td>
</tr>
<tr>
<asp:GridView ID="GridView2" AllowSorting="true"
AllowPaging="true" Runat="server"
DataSourceID="SqlDataSource2"
AutoGenerateEditButton="true"
DataKeyNames="UserName"
AutoGenerateColumns="False">
<Columns>
<asp:BoundField HeaderText="duration_id"
ReadOnly="true" DataField="duration_id"
SortExpression="duration_id"/>
<asp:BoundField HeaderText="UserName"
DataField="UserName"
SortExpression="UserName"/>
<asp:BoundField HeaderText="minute"
DataField="minute" SortExpression="minute"/>
<asp:BoundField HeaderText="second"
DataField="second" SortExpression="second"/>
</Columns>
</asp:GridView>
<asp:SqlDataSource ID="SqlDataSource2"
Runat="server" SelectCommand="SELECT [duration_id], [UserName], [minute], [second] FROM [login_time]"
UpdateCommand="UPDATE [login_time] SET [UserName] = @UserName, [minute] = @minute, [second] = @second WHERE [UserName] = @UserName"
ConnectionString="<%@ ConnectionStrings:GPS %>
</td>
</tr>
</table>
</asp:Panel>
</asp:content>
Appendix B – CRGPS’s Source Code II (Registration)

Registration.aspx

```vbnet
<%@ Page Language="VB" masterpagefile="~/SectionFunctions.master" %>
<mastertype virtualpath="~/SectionFunctions.master" />
<Import Namespace="System.Data" />
<Import Namespace="System.Data.SqlClient" />
<Import Namespace="System" />
<Import Namespace="System.Text" />

<script runat="server">
 Sub Page_load()
 'set cursor to UserName textbox
 UserName.Focus()
 If Not IsPostBack Then
 Step1.Font.Bold = True
 End If
 End Sub

 Sub Next_Click(ByVal Sender As Object, ByVal e As EventArgs)
 Select Case Sender.Parent.ID
 Case "Page1"
 Dim ConnStr As String
 ConnStr = "server=(local)\SQLEXPRESS;database=GPS;"
 ConnStr &= "Trusted_Connection=yes"
 Dim mySqlConn As New SqlConnection(ConnStr)
 mySqlConn.Open()
 Dim SQL As String = "SELECT Count(*) FROM detail WHERE UserName = '" & UserName.Text & "'
 Dim mySqlCmd As New SqlCommand(SQL, mySqlConn)
 Dim Result As Object
 Result = mySqlCmd.ExecuteScalar()
 testing.Text = CType(Result, String)
 mySqlConn.Close()

 'if none then display Page2 else display message
 If testing.Text = "0" Then
 Page1.Visible = False
 Step1.Font.Bold = False
 Page2.Visible = True
 Step2.Font.Bold = True
 ElseIf testing.Text = "1" Then
 invalid.Text = "The user name you entered is in use by another user. Please enter another " & "user name."
 UserName.Text = ""
 UserName.Focus()
 End If
 Case "Page2"
 Page2.Visible = False
 Step2.Font.Bold = False
 Page3.Visible = True
 Step3.Font.Bold = True
 WriteReview()
 'disable confirm button and all the edit button when
```
Registration.aspx, continued

```
selection not complete
ConfirmBtn.Enabled = False
If PassImage1.ImageUrl = "images/blank.JPG" Then
 EditBtn1.Enabled = False
End If
If PassImage2.ImageUrl = "images/blank.JPG" Then
 EditBtn2.Enabled = False
End If
If PassImage3.ImageUrl = "images/blank.JPG" Then
 EditBtn3.Enabled = False
End If
If PassImage4.ImageUrl = "images/blank.JPG" Then
 EditBtn4.Enabled = False
End If
If PassImage5.ImageUrl = "images/blank.JPG" Then
 EditBtn5.Enabled = False
End If
End Select
End Sub

Sub Previous_Click(ByVal Sender As Object, ByVal e As EventArgs)
 Select Case Sender.Parent.ID
 Case "Page2"
 Page2.Visible = False
 Step2.Font.Bold = False
 Page1.Visible = True
 Step1.Font.Bold = True
 invalid.Text = ""
 Case "Page3"
 TextImage.Focus()
 Page3.Visible = False
 Step3.Font.Bold = False
 Page2.Visible = True
 Step2.Font.Bold = True
 End Select
End Sub

Sub titlelist_Select(ByVal Sender As Object, ByVal E As EventArgs)
 Message1.Visible = False

 Dim mySqlConn As New SqlConnection
 Dim ConnStr As String
 ConnStr = "server=(local)\SQLEXPRESS;database=GPS;"
 ConnStr &= "Trusted_Connection=yes"
 mySqlConn = New SqlConnection(ConnStr)

 'select image_id from img table where
 'image_id=selecteditemindex in titlelist
 Dim Title As String =
 titlelist.DataKeys(titlelist.SelectedItem.ItemIndex)
 Dim MyCommand As New SqlDataAdapter("select image_id from
 'img where image_id = '' & Title & "'", mySqlConn)

 'fill the dataset and set the title of the table to
 "TitleDetails"
 Dim DS As New DataSet
 MyCommand.Fill(DS, "TitleDetails")

 Dim RowView As DataRowView =
 DS.Tables("TitleDetails").DefaultView(0)
```
'display image according to the selection
DetailsImage Src = "images/" & RowView("image_id") & ".jpg"
DetailsTitle.Text = "Image Name: " &
RowView("image_id").ToString() & "<br>"
DetailsImage.Visible = True

'rebind titlelist
titlelist.DataBind()
SelectedImageLabel.Text = DetailsImage.Src

TextImage.Value = ""
'set TextImage cursor into textbox
TextImage.Focus()
End Sub

Sub Submit_Click(ByVal Src As Object, ByVal E As EventArgs)
Message1.Visible = False

'set the no. of submit button on click to "1" if no clicking
If (HiddenField2.Value = Nothing) Then
HiddenField2.Value = "1"
End If

'set the position of image to be change to "0" if no changes
If (HiddenField1.Value = Nothing) Then
HiddenField1.Value = "0"
End If

'the length of password must be more than or equal to 4 character
If TextImage.Value.Length() < 4 Then
TextImageValidator1.Text = "Password code must be more
than or equal to 4 character"
TextImageValidator1.Visible = True
TextImage.Value = ""
Else
TextImageValidator1.Visible = False
End If

NoOfSubmitBtnClickLabel.Text += HiddenField2.Value + " times"

'check how many time submit button is on click and the
position of the image to be change and the value
'of TextImage
If HiddenField2.Value = "1" And TextImage.Value <> "" Then
'show image1 in review
PassImage1.ImageUrl = SelectedImageLabel.Text
TextImage1.Value = TextImage.Value
Editbtn1.Enabled = False
'increment the hidden field value by 1 if the submit
button is on click
HiddenField2.Value = Convert.ToInt32(HiddenField2.Value) + 1
ElseIf HiddenField2.Value = "2" And TextImage.Value <> "" Then
Then
'check existence of the selected image in review if none
show image2 in review
If SelectedImageLabel.Text <> PassImage1.ImageUrl Then
PassImage2.ImageUrl = SelectedImageLabel.Text
TextImage2.Value = TextImage.Value
'increment the hidden field value by 1 if the submit
button is on click
HiddenField2.Value =
Convert.ToInt32(HiddenField2.Value) + 1
Else
Message1.Visible = True
End If
EditBtn2.Enabled = False
ElseIf HiddenField2.Value = "3" And TextImage.Value <> ""
Then
'check existence of the selected image in review if none
show image3 in review
If SelectedImageLabel.Text <> PassImage1.ImageUrl And
   SelectedImageLabel.Text <> PassImage2._
   ImageUrl Then
   PassImage3.ImageUrl = SelectedImageLabel.Text
   TextImage3.Value = TextImage.Value
   'Increment the hidden field value by 1 if the submit
   button is on click
   HiddenField2.Value =
   Convert.ToInt32(HiddenField2.Value) + 1
Else
   Message1.Visible = True
End If
EditBtn3.Enabled = False
ElseIf HiddenField2.Value = "4" And TextImage.Value <> ""
Then
'check existence of the selected image in review if none
show image4 in review
If SelectedImageLabel.Text <> PassImage1.ImageUrl And
   SelectedImageLabel.Text <> PassImage2._
   ImageUrl And SelectedImageLabel.Text <>
   PassImage3.ImageUrl Then
   PassImage4.ImageUrl = SelectedImageLabel.Text
   TextImage4.Value = TextImage.Value
   'Increment the hidden field value by 1 if the submit
   button is on click
   HiddenField2.Value =
   Convert.ToInt32(HiddenField2.Value) + 1
Else
   Message1.Visible = True
End If
EditBtn4.Enabled = False
ElseIf HiddenField2.Value = "5" And TextImage.Value <> ""
Then
'check existence of the selected image in review if none
show image5 in review and display Page3
'and the detail contain
If SelectedImageLabel.Text <> PassImage1.ImageUrl And
   SelectedImageLabel.Text <> PassImage2._
   ImageUrl And SelectedImageLabel.Text <>
   PassImage3.ImageUrl And SelectedImageLabel._
   Text <> PassImage4.ImageUrl Then
   PassImage5.ImageUrl = SelectedImageLabel.Text
   TextImage5.Value = TextImage.Value
   'Increment the hidden field value by 1 if the submit
   button is on click
   HiddenField2.Value =
   Convert.ToInt32(HiddenField2.Value) + 1
Page2.Visible = False
Step2.Font.Bold = False
Page3.Visible = True
Step3.Font.Bold = True
WriteReview()
Message.Visible = "true"
P3Previous.Enabled = False
ConfirmBtn.Enabled = True
EditBtn1.Enabled = True
EditBtn2.Enabled = True
EditBtn3.Enabled = True
EditBtn4.Enabled = True
EditBtn5.Enabled = True
Else
Message1.Visible = True
End If
ElseIf HiddenField1.Value = "1" And TextImage.Value <> ""
Then
'check existence of the selected image in review if none change image1 and show Page3
If SelectedImageLabel.Text <> PassImage5.ImageUrl And
SelectedImageLabel.Text <> PassImage2._ImageUrl And SelectedImageLabel.Text <>
PassImage3.ImageUrl And SelectedImageLabel._Text <>
Text <> PassImage4.ImageUrl Then
PassImage1.ImageUrl = SelectedImageLabel.Text
TextImage1.Value = TextImage.Value
Page2.Visible = False
Step2.Font.Bold = False
Page3.Visible = True
Step3.Font.Bold = True
WriteReview()
Message.Visible = "true"
P3Previous.Enabled = False
ConfirmBtn.Enabled = True
Else
Message1.Visible = True
End If
ElseIf HiddenField1.Value = "2" And TextImage.Value <> ""
Then
'check existence of the selected image in review if none change image2 and show Page3
If SelectedImageLabel.Text <> PassImage1.ImageUrl And
SelectedImageLabel.Text <> PassImage5._ImageUrl And SelectedImageLabel.Text <>
PassImage3.ImageUrl And SelectedImageLabel._Text <>
Text <> PassImage4.ImageUrl Then
PassImage2.ImageUrl = SelectedImageLabel.Text
TextImage2.Value = TextImage.Value
Page2.Visible = False
Step2.Font.Bold = False
Page3.Visible = True
Step3.Font.Bold = True
WriteReview()
Message.Visible = "true"
P3Previous.Enabled = False
ConfirmBtn.Enabled = True
Else
Message1.Visible = True
End If
ElseIf HiddenField1.Value = "3" And TextImage.Value <> ""
Then
'check existence of the selected image in review if none change image3 and show Page3
If SelectedImageLabel.Text <> PassImage1.ImageUrl And
SelectedImageLabel.Text <> PassImage2._ImageUrl And
SelectedImageLabel.Text <> PassImage5.ImageUrl And
SelectedImageLabel.Text <> PassImage4.ImageUrl Then
    PassImage3.ImageUrl = SelectedImageLabel.Text
    TextImage3.Value = TextImage.Value
    Page2.Visible = False
    Step2.Font.Bold = False
    Page3.Visible = True
    Step3.Font.Bold = True
    WriteReview()
    Message.Visible = "true"
    P3Previous.Enabled = False
    ConfirmBtn.Enabled = True
Else
    Message1.Visible = True
End If
ElseIf HiddenField1.Value = "4" And TextImage.Value <> "" Then
    'check existence of the selected image in review if none
    change image4 and show Page3
    If SelectedImageLabel.Text <> PassImage1.ImageUrl And
       SelectedImageLabel.Text <> PassImage2. ImageUrl And
       SelectedImageLabel.Text <> PassImage3.ImageUrl And
       SelectedImageLabel.Text <> PassImage5.ImageUrl Then
        PassImage4.ImageUrl = SelectedImageLabel.Text
        TextImage4.Value = TextImage.Value
        Page2.Visible = False
        Step2.Font.Bold = False
        Page3.Visible = True
        Step3.Font.Bold = True
        WriteReview()
        Message.Visible = "true"
        P3Previous.Enabled = False
        ConfirmBtn.Enabled = True
    Else
        Message1.Visible = True
    End If
ElseIf HiddenField1.Value = "5" And TextImage.Value <> "" Then
    'check existence of the selected image in review if none
    change image5 and show Page3
    If SelectedImageLabel.Text <> PassImage1.ImageUrl And
       SelectedImageLabel.Text <> PassImage2. ImageUrl And
       SelectedImageLabel.Text <> PassImage3.ImageUrl And
       SelectedImageLabel.Text <> PassImage4.ImageUrl Then
        PassImage5.ImageUrl = SelectedImageLabel.Text
        TextImage5.Value = TextImage.Value
        Page2.Visible = False
        Step2.Font.Bold = False
        Page3.Visible = True
        Step3.Font.Bold = True
        WriteReview()
        Message.Visible = "true"
        P3Previous.Enabled = False
        ConfirmBtn.Enabled = True
    Else
        Message1.Visible = True
    End If
End If
ElseIf TextImage.Value = "xxxx" Then
    TextImage.Focus()
End Sub
'write detail
Sub WriteReview()
    ReviewUserNameText.Text = UserName.Text
    ReviewNameText.Text = Name.Text
    ReviewICText.Text = IC.Text
    ReviewGenderText.Text = DropDownGender.SelectedItem.Text
    ReviewRaceText.Text = DropDownRace.SelectedItem.Text
    ReviewAddressText.Text = Address.Text
    ReviewStateText.Text = State.Text
    ReviewPostcodeText.Text = Postcode.Text
    ReviewEmailText.Text = Email.Text
End Sub

'change image1
Sub EditBtn1_Click(ByVal sender As Object, ByVal a As EventArgs)
    HiddenField1.Value = "1"
    ImagePosition.Text = "Image position: 1"
    Decrease()
End Sub

'change image2
Sub EditBtn2_Click(ByVal sender As Object, ByVal a As EventArgs)
    HiddenField1.Value = "2"
    ImagePosition.Text = "Image position: 2"
    Decrease()
End Sub

'change image3
Sub EditBtn3_Click(ByVal sender As Object, ByVal a As EventArgs)
    HiddenField1.Value = "3"
    ImagePosition.Text = "Image position: 3"
    Decrease()
End Sub

'change image4
Sub EditBtn4_Click(ByVal sender As Object, ByVal a As EventArgs)
    HiddenField1.Value = "4"
    ImagePosition.Text = "Image position: 4"
    Decrease()
End Sub

'change image5
Sub EditBtn5_Click(ByVal sender As Object, ByVal a As EventArgs)
    HiddenField1.Value = "5"
    ImagePosition.Text = "Image position: 5"
    Decrease()
End Sub

display page 2
Sub Decrease()
    NoOfSubmitBtnClickLabel.Text = HiddenField2.Value
    Page2.Visible = True
    Page3.Visible = False
End Sub

Public Shared Function RSAEncrypt(ByVal DataToEncrypt() As Byte, ByVal RSAKeyInfo As RSAParameters, ByVal DoOAEPPadding As Boolean) As Byte
    Try
        'create a new instance of RSACryptoServiceProvider
    End Try
End Function
Dim RSA As New RSACryptoServiceProvider()
'import the RSA Key information
RSA.ImportParameters(RSAKeyInfo)

'encrypt the passed byte array and specify OAPEP padding.
Return RSA.Encrypt(DataToEncrypt, DoOAEPPadding)

'catch and display a CryptographicException to the console.
Catch e As CryptographicException
    Console.WriteLine(e.Message)
    Return Nothing
End Try
End Function

Public Sub EncryptPassword()
Try
    'create a UnicodeEncoder to convert between byte array and string.
    Dim ByteConverter As New UnicodeEncoding()

    Dim RSA As New System.Security.Cryptography.RSACryptoServiceProvider()

    'gets the public key
    Dim publicKey As String = RSA.ToXmlString(False)
    'gets the private key
    Dim privateKey As String = RSA.ToXmlString(True)

    Dim RSA2 As RSACryptoServiceProvider = New RSACryptoServiceProvider()
    RSA2.FromXmlString(publicKey)

    'convert the user enter passwords to bytes
    Dim EncryptedStrAsByt1() As Byte = RSA2.Encrypt(System.Text.Encoding.Unicode.GetBytes(TextImage1._Value), False)
    Dim EncryptedStrAsByt2() As Byte = RSA2.Encrypt(System.Text.Encoding.Unicode.GetBytes(TextImage2._Value), False)
    Dim EncryptedStrAsByt3() As Byte = RSA2.Encrypt(System.Text.Encoding.Unicode.GetBytes(TextImage3._Value), False)
    Dim EncryptedStrAsByt4() As Byte = RSA2.Encrypt(System.Text.Encoding.Unicode.GetBytes(TextImage4._Value), False)
    Dim EncryptedStrAsByt5() As Byte = RSA2.Encrypt(System.Text.Encoding.Unicode.GetBytes(TextImage5._Value), False)

    HiddenField8.Text = privateKey

    'convert the bytes to base64 string
    HiddenField3.Text = System.Convert.ToBase64String(EncryptedStrAsByt1)
Dim ConnStr As String
ConnStr = "server=(local)\SQLEXPRESS;database=GPS;"
ConnStr &= "Trusted_Connection=yes"
Dim mySqlConn As New SqlConnection(ConnStr)

Dim SQLInsert1 As String
Dim SQLInsert2 As String
Dim SQLInsert3 As String
Dim SQLInsert4 As String
Dim SQLInsert5 As String
Dim SQLInsert6 As String

Dim SQLInsert1 = "INSERT INTO [detail] ([UserName], [name], [IC], [gender], [race], [address], [state], [postcode], [country], [e_mail], [pass_image1], [pass_image2], [pass_image3], [pass_image4], [pass_image5], [private_key], [success], [failure]) VALUES ('" & ReviewUserNameText.Text & "', "'" & ReviewNameText.Text & "', "'" & ReviewICText.Text & "', "'" & ReviewGenderText.Text & "', "'" & ReviewRaceText.Text & "', "'" & ReviewAddressText.Text & "', "'" & ReviewStateText.Text & "', "'" & ReviewPostcodeText.Text & "', "'" & ReviewCountryText.Text & "', "'" & ReviewEmailText.Text & "', "'" & ReviewPasswordField1 & (PassImage1.ImageUrl.Remove(0, 7)).Remove(6, 4) & "', "'" & ReviewPasswordField2 & (PassImage2.ImageUrl.Remove(0, 7)).Remove(6, 4) & "', "'" & ReviewPasswordField3 & (PassImage3.ImageUrl.Remove(0, 7)).Remove(6, 4) & "', "'" & ReviewPasswordField4 & (PassImage4.ImageUrl.Remove(0, 7)).Remove(6, 4) & "', "'" & ReviewPasswordField5 & (PassImage5.ImageUrl.Remove(0, 7)).Remove(6, 4) & "', "'" & HiddenField8.Text & "', "'" & HiddenField6.Text & 0 & "', "'" & HiddenField7.Text & 0 & "', "'"")"

mySqlConn.Open()
Dim mySqlCommand1 As New SqlCommand(SQLInsert1, mySqlConn)
Dim mySqlDR1 As SqlDataReader
mySqlDR1 = mySqlCommand1.ExecuteReader()
mySqlConn.Close()

'open db connection and insert first user password into password table
mySqlConn.Open()
SQLInsert2 = "INSERT INTO [password] " & " (UserName, [pass_image], [pass_code]) VALUES ('" & ReviewUserNameText.Text & ", " & "'" & (PassImage1.ImageUrl.Remove(0, 7)).Remove(6, 4) & ", ", " & HiddenField3.Text & ")"
Dim mySqlCommand2 As New SqlCommand(SQLInsert2, mySqlConn)
Dim mySqlDR2 As SqlDataReader
mySqlDR2 = mySqlCommand2.ExecuteReader()
mySqlConn.Close()

'open db connection and insert second user password into password table
mySqlConn.Open()
SQLInsert3 = "INSERT INTO [password] " & " (UserName, [pass_image], [pass_code]) VALUES ('" & ReviewUserNameText.Text & ", " & "'" & (PassImage2.ImageUrl.Remove(0, 7)).Remove(6, 4) & ", ", " & HiddenField4.Text & ")"
Dim mySqlCommand3 As New SqlCommand(SQLInsert3, mySqlConn)
Dim mySqlDR3 As SqlDataReader
mySqlDR3 = mySqlCommand3.ExecuteReader()
mySqlConn.Close()

'open db connection and insert third user password into password table
mySqlConn.Open()
SQLInsert4 = "INSERT INTO [password] " & " (UserName, [pass_image], [pass_code]) VALUES ('" & ReviewUserNameText.Text & ", " & "'" & (PassImage3.ImageUrl.Remove(0, 7)).Remove(6, 4) & ", ", " & HiddenField5.Text & ")"
Dim mySqlCommand4 As New SqlCommand(SQLInsert4, mySqlConn)
Dim mySqlDR4 As SqlDataReader
mySqlDR4 = mySqlCommand4.ExecuteReader()
mySqlConn.Close()

'open db connection and insert forth user password into password table
mySqlConn.Open()
SQLInsert5 = "INSERT INTO [password] " & " (UserName, [pass_image], [pass_code]) VALUES ('" & ReviewUserNameText.Text & ", " & "'" & (PassImage4.ImageUrl.Remove(0, 7)).Remove(6, 4) & ", ", " & HiddenField6.Text & ")"
Dim mySqlCommand5 As New SqlCommand(SQLInsert5, mySqlConn)
Dim mySqlDR5 As SqlDataReader
mySqlDR5 = mySqlCommand5.ExecuteReader()
mySqlConn.Close()
'open db connection and insert fifth user password into password table

mySqlConn.Open()
SQLInsert6 = "INSERT INTO [password] " & "([UserName], [pass_image], [pass_code]) VALUES (" & ReviewUserNameText.Text & ", " & (PassImage5.ImageUrl.Remove(0, 7)).Remove(6, 4) & ", " & HiddenField7.Text & ")"
Dim mySqlCommand6 As New SqlCommand(SQLInsert6, mySqlConn)
Dim mySqlDR6 As SqlDataReader
mySqlDR6 = mySqlCommand6.ExecuteReader()
mySqlConn.Close()

'display message if insert successfully and redirect the user to login page
Message.Text = "Insert successfully"
Message.Visible = True
Response.Redirect("Login.aspx")

End If
End Sub
</script>

<asp:content id="Content1" contentplaceholderid="IntroText" runat="server">
<asp:Label ID="RegWiz" runat="server" Font-Bold="True" Font-Names="verdana" Font-Size="16pt" Text="Registration Wizard" BorderWidth="7px" BorderStyle="Ridge" Width="100%"></asp:Label>
<br />
<asp:Label ID="Step1" runat="server" Font-Names="Verdana" Text="Step 1: Enter Personal Info."></asp:Label>
<br />
<asp:Label ID="Step2" runat="server" Font-Names="Verdana" Text="Step 2: Choose 5 objects as your password object and then enter password code for each one. Password code must be equal or more than 4 character."></asp:Label>
<br />
<br />
</asp:content>
<asp:content id="Content2" contentplaceholderid="FunctionRequire" runat="server">
<asp:Panel ID="Page1" BackColor="silver" Width="400px" runat="server">
<asp:Label ID="invalid" runat="server"></asp:Label>
<table align="center" >
<tr>
<td>
<asp:Label ID="UserNameLabel" runat="server" Text="Username: "></asp:Label></td>
<td>
<asp:TextBox ID="UserName" MaxLength="30" runat="server"></asp:TextBox>
<asp:RequiredFieldValidator ID="UserNameValidator" ControlToValidate ="UserName" Display="Dynamic" ErrorMessage ="Username is Required" Font-Names="Verdana" Font-Size="10pt" runat="server" />
</td>
</tr>
</table>
</asp:Panel>
</asp:content>
<table>
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td>Name:</td>
</tr>
<tr>
<td>TextBox</td>
<td>TextBox</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>I.C No.:</td>
<td>I.C No.:</td>
</tr>
<tr>
<td>TextBox</td>
<td>TextBox</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender:</td>
<td>Gender:</td>
</tr>
<tr>
<td>DropDownList</td>
<td>DropDownList</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Race:</td>
<td>Race:</td>
</tr>
<tr>
<td>DropDownList</td>
<td>DropDownList</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
</table>

Must be in form: XXXXXX-XX-XXXX
<td>
  <asp:Label ID="AddressLabel" runat="server"
    Text="Address: "></asp:Label>
</td>
<td>
  <asp:TextBox ID="Address"
    runat="server"></asp:TextBox>
</td>
</tr>
<tr>
  <td>
    <asp:Label ID="StateLabel" runat="server"
      Text="State: "></asp:Label>
  </td>
  <td>
    <asp:TextBox ID="State"
      runat="server"></asp:TextBox>
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="PostcodeLabel" runat="server"
      Text="Postcode: "></asp:Label>
  </td>
  <td>
    <asp:TextBox ID="Postcode"
      runat="server"></asp:TextBox>
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="CountryLabel" runat="server"
      Text="Country: "></asp:Label>
  </td>
  <td>
    <asp:TextBox ID="Country"
      runat="server"></asp:TextBox>
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="EmailLabel" runat="server"
      Text="E-mail: "></asp:Label>
  </td>
  <td>
    <asp:TextBox ID="Email"
      runat="server"></asp:TextBox>
    <asp:RequiredFieldValidator ID="EmailValidator"
      ControlToValidate="Email" Display="Dynamic"
      ErrorMessage="Email Address is Required"
      Font-Names="Verdana" Font-Size="10pt"
      runat="server" />
    <asp:RegularExpressionValidator
      id="EmailRegularExpressionValidator" runat="server"
      ControlToValidate="Email"
      ValidationExpression="^\w\-+@\w\-+\.(com|net|org|edu|mil)$"
      Display="Static"
      Font-Names="verdana" Font-Size="10pt">
      Please enter a valid e-mail address
    </asp:RegularExpressionValidator>
  </td>
</tr>
<tr>
  <td colspan="2" align="center" >
    <asp:Button ID="P1Previous" runat="server"
      Enabled="False" Text="Previous"
      OnClick="Previous_Click"
  </td>
Registration.aspx, continued

```html
<asp:Button ID="P1Next" runat="server"
Text="Next" OnClick="Next_Click"
onmouseover="this.style.backgroundColor='yellow'"
onmouseout="this.style.backgroundColor='buttonface'" />
<input id="P1Reset" type="reset" runat="server"
value="Clear"
onmouseover="this.style.backgroundColor='yellow'"
onmouseout="this.style.backgroundColor='buttonface'" />
</td>
</tr>
</table>
<asp:Label ID="testing" visible="false" runat="server" />
</asp:Panel>
<asp:Panel ID="Page2" BackColor="silver" Width="400px"
runat="server" Visible="False">
Choose a category:
<asp:DropDownList ID="DropDownList1"
DataSourceID="SqlDataSource2" AutoPostBack="true"
DataTextField="category" runat="server" />
<asp:SqlDataSource ID="SqlDataSource2" runat="server"
SelectCommand="SELECT DISTINCT [category] FROM [img]"
ConnectionString="<%$ ConnectionStrings:GPS %>">
<table width="100%">
<tr>
<td>
<asp:datalist id="titlelist"
DataSourceID="SqlDataSource1" repeatcolumns="10"
gridlines="both" cellpadding="5"
OnSelectedIndexChanged="titlelist_Select"
DataKeyField="image_id" runat="server">
<ItemTemplate>
<table style="font: 10pt verdana">
<tr>
<td valign="top">
<asp:ImageButton ImageAlign="top" ImageURL='<%# DataBinder.Eval(Container.DataItem, "image_id"), "images/{0}.jpg" %>
runat="server"
CssClass="removeBorder" BorderWidth="0.2cm"
onmouseover="this.className='applyBorder'"
onmouseout="this.className='removeBorder'
(CommandName="Select" />
<asp:label ID="ImageNameLabel"
Text='<%# DataBinder.Eval(Container.DataItem, "image_id") %>'
style="color:darkred" visible="false" runat="server"/>
</td>
</tr>
</table>
</asp:datalist>''
```

163
Password Code: <input id="TextImage" size="15" maxlength="10" type="text" value="xxxx" runat="server" />
<br />

Registration.aspx, continued
<asp:HiddenField ID="HiddenField2" runat="server" />
<asp:HiddenField ID="HiddenField1" runat="server" />
<asp:Button id="Submit" Text="Submit" runat="server" OnClick="Submit_Click" />
<asp:Label ID="NoOfSubmitBtnClickLabel" Text="Submit Button Clicked: " visible="false" runat="server"></asp:Label><br />
<asp:Label ID="ImagePosition" runat="server"></asp:Label><br />
<asp:Label ID="Message1" Text="Image already choosen!! Please choose another image!!" visible="false" runat="server" />
</asp:Label>
<asp:Label ID="Message2" visible="false" runat="server"></asp:Label>
</td>
</tr>
</table>
<asp:SqlDataSource ID="SqlDataSource1" runat="server" SelectCommand="SELECT [image_id], [category] FROM [img] WHERE ([category] = @category)" ConnectionString="%$ConnectionStrings:GPS %">
<SelectParameters>
<asp:ControlParameter ControlID="DropDownList1" Name="category" PropertyName="SelectedValue" Type="String" />
</SelectParameters>
</asp:SqlDataSource>
</asp:Panel>
<asp:Panel ID="Page3" BackColor="silver" Width="400px" runat="server" Visible="False">
<table align="center">
<tr>
<td>
<asp:Label ID="ReviewUserName" runat="server" Text="User Name: "></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewUserNameText" runat="server"></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewName" runat="server" Text="Name: "></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewNameText" runat="server"></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewIC" runat="server" Text="I.C. No. : "></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewICText" runat="server"></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewGender" runat="server" Text="Gender: "></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewGenderText" runat="server"></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewRace" runat="server" Text="Race: "></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewRaceText" runat="server"></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewAddress" runat="server" Text="Address: "></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewAddressText" runat="server"></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewState" runat="server" Text="State: "></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewStateText" runat="server"></asp:Label></td>
</tr>
<tr>
<td>
<asp:Label ID="ReviewPostcode" runat="server" Text="Postcode: "></asp:Label></td>
</tr>
</table>
</asp:Panel>
<table>
<thead>
<tr>
<th>Colspan</th>
<th>Image ID</th>
<th>Image URL</th>
<th>Input ID</th>
<th>Input size</th>
<th>Input type</th>
<th>Button ID</th>
<th>Button text</th>
<th>On Click Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>PassImage1</td>
<td>images/blank.JPG</td>
<td>TextImage1</td>
<td>10</td>
<td>text</td>
<td>Editbtn1</td>
<td>Change Picture</td>
<td>EditBtn1_Click</td>
</tr>
<tr>
<td>3</td>
<td>PassImage2</td>
<td>images/blank.JPG</td>
<td>TextImage2</td>
<td>10</td>
<td>text</td>
<td>Editbtn2</td>
<td>Change Picture</td>
<td>EditBtn2_Click</td>
</tr>
<tr>
<td>3</td>
<td>PassImage3</td>
<td>images/blank.JPG</td>
<td>TextImage3</td>
<td>10</td>
<td>text</td>
<td>Editbtn3</td>
<td>Change Picture</td>
<td>EditBtn3_Click</td>
</tr>
<tr>
<td>3</td>
<td>PassImage4</td>
<td>images/blank.JPG</td>
<td>TextImage4</td>
<td>10</td>
<td>text</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<input id="TextImage4" size="10" type="text" runat="server" />
<asp:button ID="EditBtn4" text="Change Picture" OnClick="EditBtn4_Click" runat="server" />
</td>
</tr>
<tr>
<td colspan="3">
<asp:image ID="PassImage5" ImageUrl="images/blank.JPG" runat="server" />
<input id="TextImage5" size="10" type="text" runat="server" />
<asp:button ID="EditBtn5" text="Change Picture" OnClick="EditBtn5_Click" runat="server" />
</td>
</tr>
<tr>
<td>
<asp:button ID="ConfirmBtn" text="Confirm" OnClick="ConfirmBtn_Click" runat="server" />
<asp:label ID="HiddenField3" runat="server" />
<asp:label ID="HiddenField4" runat="server" />
<asp:label ID="HiddenField5" runat="server" />
<asp:label ID="HiddenField6" runat="server" />
<asp:label ID="HiddenField7" runat="server" />
<asp:label ID="HiddenField8" runat="server" />
<asp:label ID="HiddenField9" runat="server" />
</td>
</tr>
<tr>
<td colspan="2">
<asp:button ID="P3Previous" runat="server" Text="Previous" OnClick="Previous_Click" onmouseover="this.style.backgroundColor='yellow' " onmouseout="this.style.backgroundColor='buttonface' ">
</asp:button>
<asp:button ID="P3Next" runat="server" Text="Next" OnClick="Next_Click" Enabled="false" onmouseover="this.style.backgroundColor='yellow' " onmouseout="this.style.backgroundColor='buttonface' ">
</asp:button>
<input id="P3Reset" type="reset" disabled runat="server" value="Clear" onmouseover="this.style.backgroundColor='yellow' " onmouseout="this.style.backgroundColor='buttonface' ">
</td>
</tr>
</table>
</asp:panel>
</asp:content>
Appendix C – CRGPS’s Source Code III (Reset)

Reset.aspx

```<%@ Page Language="VB" masterpagefile="~/SectionFunctions.master" %>
%@ mastertype virtualpath="~/SectionFunctions.master"
%@ Import Namespace="System.Data"
%@ Import Namespace="System.Data.SqlClient"
%@ Import Namespace="System"
%@ Import Namespace="System.Security.Cryptography"
%@ Import Namespace="System.Text">
<script runat="server">
 Sub Page_Load()
 'set cursor in UserName
 UserName.Focus()
 If Not IsPostBack Then
 Step1.Font.Bold = True
 End If

 'if maximum tries to login using username more than 3 times
 then redirect the user to failed login page
 If Session("UserNameNumTries") > Application("UserNameMaxTries") Then
 Response.Redirect("./username_failed_login.aspx")
 End If

 'if maximum tries to login using password more than 3 times
 then redirect the user to failed login page
 If Session("PasswordNumTries") > Application("PasswordMaxTries") Then
 Response.Redirect("./password_failed_login.aspx")
 End If
 End Sub

 Sub P2Reset_Click(ByVal Sender As Object, ByVal e As EventArgs)
 Name.Text = ""
 IC.Text = ""
 Address.Text = ""
 State.Text = ""
 Postcode.Text = ""
 Country.Text = ""
 Email.Text = ""
 End Sub

 Sub Next_Click(ByVal Sender As Object, ByVal e As EventArgs)
 Select Case Sender.Parent.ID
 Case "Page1"
 Dim ConnStr As String
 ConnStr = "server=(local)\SQLEXPRESS;database=GPS;"
 ConnStr &= "Trusted_Connection=yes"
 Dim mySqlConn As New SqlConnection(ConnStr)

 'open database connection and check existence of UserName in detail table
 mySqlConn.Open()
 Dim SQLSelect1 As String = "SELECT Count(*) FROM detail WHERE UserName = '" & UserName.Text & "'"
 Dim mySqlCmd1 As New SqlCommand(SQLSelect1, mySqlConn)
 Dim Result1 As Object
 Result1 = mySqlCmd1.ExecuteScalar()
 End Case
 End Sub
</script>"
Reset.aspx, continued

 testing1.Text = CType(Result1, String)
 mySqlConn.Close()

 'if UserName do exist then display Page2
 If testing1.Text = "1" Then
 Page2.Visible = True
 Step2.Font.Bold = True
 Page1.Visible = False
 Step1.Font.Bold = False

 'open database connection and select all the
detail from detail table according to the
UserName
 mySqlConn.Open()
 Dim SQLSelect2 As String = "SELECT * FROM detail
 WHERE UserName = '" & UserName.Text & "'
 Dim mySqlCmd2 As New SqlCommand(SQLSelect2, mySqlConn)
 Dim mySqlDR As SqlDataReader
 mySqlDR = mySqlCmd2.ExecuteReader()
 While mySqlDR.Read() = True
 Name.Text = Trim(mySqlDR("name"))
 IC.Text = Trim(mySqlDR("IC"))
 DropDownListGender.SelectedItem.Text =
 Trim(mySqlDR("gender"))
 DropDownListRace.SelectedItem.Text =
 Trim(mySqlDR("race"))
 Address.Text = Trim(mySqlDR("address"))
 State.Text = Trim(mySqlDR("state"))
 Postcode.Text = Trim(mySqlDR("postcode"))
 Country.Text = Trim(mySqlDR("country"))
 Email.Text = Trim(mySqlDR("e_mail"))
 End While
 mySqlConn.Close()
 invalid.Visible = False
 ElseIf testing1.Text = "0" Then
 'increase 1 to failed login
 Session("UserNameNumTries") =
 Session("UserNameNumTries") + 1
 'if failed login more than 3 times then display
failed login page
 If Session("UserNameNumTries") >=
 Application("UserNameMaxTries") Then
 Response.Redirect("./username_failed_login.aspx"")
 Else
 invalid.Text = "The user name was not found. Please try again."
 UserName.Text = ""
 UserName.Focus()
 End If
 End If

 Case "Page2"
 Dim ConnStr As String
 ConnStr = "server=(local)\SQLEXPRESS;database=GPS;" &
 "Trusted_Connection=yes"
 Dim mySqlConn As New SqlConnection(ConnStr)

 'open db connection and select password image1 from
detail table and add it to arraylist
 'DataArray()
 mySqlConn.Open()
Dim SQLSelect3 As String = "SELECT pass_image1 FROM detail " & "WHERE UserName = '", UserName.Text & "'
Dim mySqlCmd3 As New SqlCommand(SQLSelect3, mySqlConn)
Dim Result3 As Object
Result3 = mySqlCmd3.ExecuteScalar()
mySqlConn.Close()

'open db connection and select password image2 from detail table and add it to arraylist 'DataArray()
mySqlConn.Open()
Dim SQLSelect4 As String = "SELECT pass_image2 FROM detail " & "WHERE UserName = '", UserName.Text & "'
Dim mySqlCmd4 As New SqlCommand(SQLSelect4, mySqlConn)
Dim Result4 As Object
Result4 = mySqlCmd4.ExecuteScalar()
mySqlConn.Close()

'open db connection and select password image3 from detail table and add it to arraylist 'DataArray()
mySqlConn.Open()
Dim SQLSelect5 As String = "SELECT pass_image3 FROM detail " & "WHERE UserName = '", UserName.Text & "'
Dim mySqlCmd5 As New SqlCommand(SQLSelect5, mySqlConn)
Dim Result5 As Object
Result5 = mySqlCmd5.ExecuteScalar()
mySqlConn.Close()

'open db connection and select password image4 from detail table and add it to arraylist 'DataArray()
mySqlConn.Open()
Dim SQLSelect6 As String = "SELECT pass_image4 FROM detail " & "WHERE UserName = '", UserName.Text & "'
Dim mySqlCmd6 As New SqlCommand(SQLSelect6, mySqlConn)
Dim Result6 As Object
Result6 = mySqlCmd6.ExecuteScalar()
mySqlConn.Close()

'open db connection and select password image5 from detail table and add it to arraylist 'DataArray()
mySqlConn.Open()
Dim SQLSelect7 As String = "SELECT pass_image5 FROM detail " & "WHERE UserName = '", UserName.Text & "'
Dim mySqlCmd7 As New SqlCommand(SQLSelect7, mySqlConn)
Dim Result7 As Object
Result7 = mySqlCmd7.ExecuteScalar()
mySqlConn.Close()

'open db connection and get the correctspond password code
Dim SQLSelect8 As String = "SELECT pass_code FROM password " & "WHERE UserName='", UserName.Text & "'
AND pass_image='", CType(Result3, String) & "'

Reset.aspx, continued

```vbnet
mySqlConn.Open()
Dim mySqlCmd8 As New SqlCommand(SQLSelect8, mySqlConn)

Dim Result8 As Object
Result8 = mySqlCmd8.ExecuteScalar()
mySqlConn.Close()

' open db connection and get the correctspond password code
Dim SQLSelect9 As String = "SELECT pass_code FROM password " & "WHERE UserName='" & UserName.Text & "' AND pass_image='" & CType(Result4, String) & "'
mySqlConn.Open()
Dim mySqlCmd9 As New SqlCommand(SQLSelect9, mySqlConn)
Dim Result9 As Object
Result9 = mySqlCmd9.ExecuteScalar()
mySqlConn.Close()

' open db connection and get the correctspond password code
Dim SQLSelect10 As String = "SELECT pass_code FROM password " & "WHERE UserName='" & UserName.Text & "' AND pass_image='" & CType(Result5, String) & "'
mySqlConn.Open()
Dim mySqlCmd10 As New SqlCommand(SQLSelect10, mySqlConn)
Dim Result10 As Object
Result10 = mySqlCmd10.ExecuteScalar()
mySqlConn.Close()

' open db connection and get the correctspond password code
Dim SQLSelect11 As String = "SELECT pass_code FROM password " & "WHERE UserName='" & UserName.Text & "' AND pass_image='" & CType(Result6, String) & "'
mySqlConn.Open()
Dim mySqlCmd11 As New SqlCommand(SQLSelect11, mySqlConn)
Dim Result11 As Object
Result11 = mySqlCmd11.ExecuteScalar()
mySqlConn.Close()

' open db connection and get the correctspond password code
Dim SQLSelect12 As String = "SELECT pass_code FROM password " & "WHERE UserName='" & UserName.Text & "' AND pass_image='" & CType(Result7, String) & "'
mySqlConn.Open()
Dim mySqlCmd12 As New SqlCommand(SQLSelect12, mySqlConn)
Dim Result12 As Object
Result12 = mySqlCmd12.ExecuteScalar()
mySqlConn.Close()

' show user choosen password images
PassImage1.ImageUrl = "images/" & Trim(CType(Result3, String)) & ".jpg"
PassImage2.ImageUrl = "images/" & Trim(CType(Result4, String)) & ".jpg"
PassImage3.ImageUrl = "images/" & Trim(CType(Result5, String)) & ".jpg"
```
PassImage4.ImageUrl = "images/" &
Trim(CType(Result6, String)) & ".jpg"
PassImage5.ImageUrl = "images/" &
Trim(CType(Result7, String)) & ".jpg"

Try
' create a UnicodeEncoder to convert between byte
array and string.
Dim ByteConverter As New UnicodeEncoding()

' create byte arrays to hold decrypted data.
Dim decryptedData1() As Byte
Dim decryptedData2() As Byte
Dim decryptedData3() As Byte
Dim decryptedData4() As Byte
Dim decryptedData5() As Byte

' get user's private key from database
Dim SQLSelect13 As String = "SELECT private_key
FROM detail " & "WHERE UserName='" &
UserName.Text & "'
mySqlConn.Open()
Dim mySqlCmd13 As New SqlCommand(SQLSelect13, mySqlConn)
Dim Result13 As Object
Result13 = mySqlCmd13.ExecuteScalar()
mySqlConn.Close()

Dim privateKey As String = Trim(CType(Result13, String))
' load the private key
Dim RSA1 As RSACryptoServiceProvider = New
RSACryptoServiceProvider()
RSA1.FromXmlString(privateKey)

' assign password codes get from database to 5
strings
Dim str6 As String = CType(Result8, String)
Dim str7 As String = CType(Result9, String)
Dim str8 As String = CType(Result10, String)
Dim str9 As String = CType(Result11, String)
Dim str10 As String = CType(Result12, String)

' create byte arrays to hold converted password
code
Dim getStr1() As Byte
Dim getStr2() As Byte
Dim getStr3() As Byte
Dim getStr4() As Byte
Dim getStr5() As Byte

' convert the password code from string to byte
arrays
getStr1 = System.Convert.FromBase64String(str6)
getStr2 = System.Convert.FromBase64String(str7)
getStr3 = System.Convert.FromBase64String(str8)
getStr4 = System.Convert.FromBase64String(str9)
getStr5 = System.Convert.FromBase64String(str10)

' pass the data to DECRYPT, the private key
information using
RSACryptoServiceProvider.ExportParameters(true),
and a boolean flag specifying no OAEP padding.
decryptedData1 = RSA1.Decrypt(getStr1, False)
decryptedData2 = RSA1.Decrypt(getStr2, False)
decryptedData3 = RSA1.Decrypt(getStr3, False)
decryptedData4 = RSA1.Decrypt(getStr4, False)
decryptedData5 = RSA1.Decrypt(getStr5, False)
'declare string to hold converted decrypted byte arrays
Dim str1 As String = ByteConverter.GetString(decryptedData1)
Dim str2 As String = ByteConverter.GetString(decryptedData2)
Dim str3 As String = ByteConverter.GetString(decryptedData3)
Dim str4 As String = ByteConverter.GetString(decryptedData4)
Dim str5 As String = ByteConverter.GetString(decryptedData5)

'assign combination of password first letter and the less of the password to a respective label
TextImage1.Value = str1
TextImage2.Value = str2
TextImage3.Value = str3
TextImage4.Value = str4
TextImage5.Value = str5

Catch ce As CryptographicException
t1.Text += ce.ToString()
End Try

WriteReview()

Page2.Visible = False
Step2.Font.Bold = False
Page4.Visible = True
Step4.Font.Bold = True
Case "Page3"
Page3.Visible = False
Step3.Font.Bold = False
Page4.Visible = True
Step4.Font.Bold = True
WriteReview()
'disable confirm button and all the edit button when selection of image not complete
ConfirmBtn.Enabled = False
If PassImage1.ImageUrl = "images/blank.JPG" Then
 Editbtn1.Enabled = False
End If
If PassImage2.ImageUrl = "images/blank.JPG" Then
 EditBtn2.Enabled = False
End If
If PassImage3.ImageUrl = "images/blank.JPG" Then
 EditBtn3.Enabled = False
End If
If PassImage4.ImageUrl = "images/blank.JPG" Then
 EditBtn4.Enabled = False
End If
If PassImage5.ImageUrl = "images/blank.JPG" Then
 EditBtn5.Enabled = False
End If
End Select
End Sub

Sub Previous_Click(ByVal Sender As Object, ByVal e As EventArgs)
 Select Case Sender.Parent.ID
 Case "Page2"
 invalid.Text = ""
 Page2.Visible = False
 Step2.Font.Bold = False
 Page1.Visible = True
 Step1.Font.Bold = True
 Case "Page3"
 Page3.Visible = False
 Step3.Font.Bold = False
 Page2.Visible = True
 Step2.Font.Bold = True
 Case "Page4"
 Page4.Visible = False
 Step4.Font.Bold = False
 Page3.Visible = True
 Step3.Font.Bold = True
 End Select
End Sub

Sub titlelist_Select(ByVal Sender As Object, ByVal e As EventArgs)
 Message1.Visible = False
 Dim mySqlConn As New SqlConnection
 Dim ConnStr As String
 ConnStr = "server=(local)\SQLEXPRESS;database=GPS;" & "Trusted_Connection=yes"
 mySqlConn = New SqlConnection(ConnStr)
 Dim Title As String = titlelist.DataKeys(titlelist.SelectedItem.ItemIndex)
 Dim MyCommand As New SqlDataAdapter("select image_id from img " & "where image_id = '" & Title & '"", mySqlConn)
 Dim DS As New DataSet
 MyCommand.Fill(DS, "TitleDetails")
 Dim RowView As DataRowView = DS.Tables("TitleDetails").DefaultView(0)
 DetailsImage.Src = "images/" & RowView("image_id") & ".jpg"
 DetailsTitle.Text = "Image Name: " & RowView("image_id").ToString() & "&
"
 DetailsImage.Visible = True
 Dim TitleDetails As String = titlelist.DataKeys(titlelist.SelectedItem.ItemIndex)
 SelectedImageLabel.Text = DetailsImage.Src
 TextImage.Value = ""
 'set cursor in TextImage
 TextImage.Focus()
End Sub

Sub Submit_Click(ByVal Src As Object, ByVal e As EventArgs)
Message1.Visible = False

'check how many time submit button is on click and the position of the image to be change and the value of TextImage
If HiddenField1.Value = "1" And TextImage.Value <> "" Then
 'check existence of the selected image in review if none change image1 and show Page3
 If SelectedImageLabel.Text <> PassImage5.ImageUrl And
 SelectedImageLabel.Text <> PassImage2.ImageUrl And
 SelectedImageLabel.Text <> PassImage3.ImageUrl And
 SelectedImageLabel.Text <> PassImage4.ImageUrl Then
 PassImage1.ImageUrl = SelectedImageLabel.Text
 TextImage1.Value = TextImage.Value
 Page3.Visible = False
 Step3.Font.Bold = False
 Page4.Visible = True
 Step4.Font.Bold = True
 WriteReview()
 Message.Visible = "true"
 P3Previous.Enabled = False
 ConfirmBtn.Enabled = True
 Else
 Message1.Visible = True
 End If
ElseIf HiddenField1.Value = "2" And TextImage.Value <> "" Then
 'check existence of the selected image in review if none change image2 and show Page3
 If SelectedImageLabel.Text <> PassImage1.ImageUrl And
 SelectedImageLabel.Text <> PassImage5.ImageUrl And
 SelectedImageLabel.Text <> PassImage3.ImageUrl And
 SelectedImageLabel.Text <> PassImage4.ImageUrl Then
 PassImage2.ImageUrl = SelectedImageLabel.Text
 TextImage2.Value = TextImage.Value
 Page3.Visible = False
 Step3.Font.Bold = False
 Page4.Visible = True
 Step4.Font.Bold = True
 WriteReview()
 Message.Visible = "true"
 P3Previous.Enabled = False
 ConfirmBtn.Enabled = True
 Else
 Message1.Visible = True
 End If
ElseIf HiddenField1.Value = "3" And TextImage.Value <> "" Then
 'check existence of the selected image in review if none change image3 and show Page3
 If SelectedImageLabel.Text <> PassImage1.ImageUrl And
 SelectedImageLabel.Text <> PassImage2.ImageUrl And
 SelectedImageLabel.Text <> PassImage5.ImageUrl And
 SelectedImageLabel.Text <> PassImage4.ImageUrl Then
 PassImage3.ImageUrl = SelectedImageLabel.Text
 TextImage3.Value = TextImage.Value
 Page3.Visible = False
 Step3.Font.Bold = False
 Page4.Visible = True
 Step4.Font.Bold = True
 WriteReview()
 Message.Visible = "true"
 P3Previous.Enabled = False
ConfirmBtn.Enabled = True
Else
 Message1.Visible = True
End If
ElseIf HiddenField1.Value = "4" And TextImage.Value <> ""
Then
 'check existence of the selected image in review if none
 change image4 and show Page3
 If SelectedImageLabel.Text <> PassImage1.ImageUrl And
 SelectedImageLabel.Text <> PassImage2.ImageUrl And
 SelectedImageLabel.Text <> PassImage3.ImageUrl And
 SelectedImageLabel.Text <> PassImage5.ImageUrl Then
 PassImage4.ImageUrl = SelectedImageLabel.Text
 TextImage4.Value = TextImage.Value
 Page3.Visible = False
 Step3.Font.Bold = False
 Step4.Font.Bold = True
 WriteReview()
 Message.Visible = "true"
 P3Previous.Enabled = False
 ConfirmBtn.Enabled = True
 Else
 Message1.Visible = True
 ConfirmBtn.Enabled = True
 End If
ElseIf HiddenField1.Value = "5" And TextImage.Value <> ""
Then
 'check existence of the selected image in review if none
 change image5 and show Page3
 If SelectedImageLabel.Text <> PassImage1.ImageUrl And
 SelectedImageLabel.Text <> PassImage2.ImageUrl And
 SelectedImageLabel.Text <> PassImage3.ImageUrl And
 SelectedImageLabel.Text <> PassImage4.ImageUrl Then
 PassImage5.ImageUrl = SelectedImageLabel.Text
 TextImage5.Value = TextImage.Value
 Page3.Visible = False
 Step3.Font.Bold = False
 Step4.Font.Bold = True
 WriteReview()
 Message.Visible = "true"
 P3Previous.Enabled = False
 ConfirmBtn.Enabled = True
 Else
 Message1.Visible = True
 End If
End If
ElseIf HiddenField1.Value = "xxxx"
TextImage.Focus()
End Sub

'write detail
Sub WriteReview()
 ReviewUserNameText.Text = UserName.Text
 ReviewNameText.Text = Name.Text
 ReviewICText.Text = IC.Text
 ReviewGenderText.Text = DropDownGender.SelectedItem.Text
 ReviewRaceText.Text = DropDownRace.SelectedItem.Text
 ReviewAddressText.Text = Address.Text
 ReviewStateText.Text = State.Text
 ReviewPostcodeText.Text = Postcode.Text
ReviewEmailText.Text = Email.Text
End Sub

'change image1
Sub EditBtn1_Click(ByVal sender As Object, ByVal a As EventArgs)
 HiddenField1.Value = "1"
 ImagePosition.Text = "Image position: 1"
 Decrease()
End Sub

'change image2
Sub EditBtn2_Click(ByVal sender As Object, ByVal a As EventArgs)
 HiddenField1.Value = "2"
 ImagePosition.Text = "Image position: 2"
 Decrease()
End Sub

'change image3
Sub EditBtn3_Click(ByVal sender As Object, ByVal a As EventArgs)
 HiddenField1.Value = "3"
 ImagePosition.Text = "Image position: 3"
 Decrease()
End Sub

'change image4
Sub EditBtn4_Click(ByVal sender As Object, ByVal a As EventArgs)
 HiddenField1.Value = "4"
 ImagePosition.Text = "Image position: 4"
 Decrease()
End Sub

'change image5
Sub EditBtn5_Click(ByVal sender As Object, ByVal a As EventArgs)
 HiddenField1.Value = "5"
 ImagePosition.Text = "Image position: 5"
 Decrease()
End Sub

'decrease the no. of submit button on click by 1
Sub Decrease()
 Page3.Visible = True
 Page4.Visible = False
End Sub

Public Shared Function RSAEncrypt(ByVal DataToEncrypt() As Byte, ByVal RSAKeyInfo As RSAParameters, ByVal DoOAEPPadding As Boolean) As Byte
Try
 'create a new instance of RSACryptoServiceProvider
 Dim RSA As New RSACryptoServiceProvider()

 'import the RSA Key information
 RSA.ImportParameters(RSAKeyInfo)

 'encrypt the passed byte array and specify OAEP padding
 Return RSA.Encrypt(DataToEncrypt, DoOAEPPadding)
Catch e As CryptographicException
 Console.WriteLine(e.Message)
End Try
Return Nothing
Public Sub EncryptPassword()
 Try
 ' create a UnicodeEncoder to convert between byte array and string.
 Dim ByteConverter As New UnicodeEncoding()

 Dim RSA As New System.Security.Cryptography.RSACryptoServiceProvider()

 ' gets the public key
 Dim publicKey As String = RSA.ToXmlString(False)

 ' gets the private key
 Dim privateKey As String = RSA.ToXmlString(True)

 Dim RSA2 As RSACryptoServiceProvider = New RSACryptoServiceProvider()
 RSA2.FromXmlString(publicKey)

 ' convert user enter password to bytes
 Dim EncryptedStrAsByt1() As Byte = RSA2.Encrypt(System.Text.Encoding.Unicode.GetBytes(TextImage1.Value), False)
 Dim EncryptedStrAsByt2() As Byte = RSA2.Encrypt(System.Text.Encoding.Unicode.GetBytes(TextImage2.Value), False)
 Dim EncryptedStrAsByt5() As Byte = RSA2.Encrypt(System.Text.Encoding.Unicode.GetBytes(TextImage5.Value), False)

 HiddenField8.Text = privateKey

 ' convert the bytes to base64 strings
 HiddenField3.Text = System.Convert.ToBase64String(EncryptedStrAsByt1)
 HiddenField4.Text = System.Convert.ToBase64String(EncryptedStrAsByt2)
 HiddenField5.Text = System.Convert.ToBase64String(EncryptedStrAsByt3)
 HiddenField6.Text = System.Convert.ToBase64String(EncryptedStrAsByt4)
 HiddenField7.Text = System.Convert.ToBase64String(EncryptedStrAsByt5)

 ' catch exception in case the encryption did not succeed.
 Catch e As ArgumentNullException
 Message2.Text += "Encryption failed."
 Catch e As CryptographicException
 Message2.Text += e.Message
 End Try
 End Sub
Sub ConfirmBtn_Click(ByVal sender As Object, ByVal e As EventArgs)

 Dim ConnStr As String
 ConnStr = "server=(local)\SQLEXPRESS;database=GPS;" & "Trusted_Connection=yes"
 Dim mySqlConn As New SqlConnection(ConnStr)

 Dim SQLUpdate As String
 Dim SQLInsert1 As String
 Dim SQLInsert2 As String
 Dim SQLInsert3 As String
 Dim SQLInsert4 As String
 Dim SQLInsert5 As String
 Dim SqlDelete As String

 EncrytPassword()

 'open db connection and update detail table accordingly
 SQLUpdate = "UPDATE detail " & _
 mySqlConn.Open()
 Dim mySqlCommand1 As New SqlCommand(SQLUpdate, mySqlConn)
 Dim mySqlDR1 As SqlDataReader
 mySqlDR1 = mySqlCommand1.ExecuteReader()
 mySqlConn.Close()

 'open db connection and delete all the password detail in password table according to the UserName
 SqlDelete = "DELETE FROM [password] WHERE [UserName]='" & ReviewUserNameText.Text & "'
 Dim mySqlCommand7 As New SqlCommand(SqlDelete, mySqlConn)
 Dim mySqlDR7 As SqlDataReader
 mySqlDR7 = mySqlCommand7.ExecuteReader()
 mySqlConn.Close()

 'open db connection and insert the new password1 into password table
 SQLInsert1 = "INSERT INTO [password] " & "([UserName], [pass_image], [pass_code]) VALUES ('" & ReviewUserNameText.Text & ", '" & HiddenField3.Text & ")"
 Dim mySqlCommand2 As New SqlCommand(SQLInsert1, mySqlConn)
 Dim mySqlDR2 As SqlDataReader
Reset.aspx, continued

```csharp
mySqlDR2 = mySqlCommand2.ExecuteReader()
mySqlConn.Close()

'open db connection and insert the new password2 into password table
mySqlConn.Open()
SQLInsert2 = "INSERT INTO [password] " & "([UserName], [pass_image], [pass_code]) VALUES (" & ReviewUserNameText.Text & "," & "" & (PassImage2.ImageUrl.Remove(0, 7)).Remove(6, 4) & "," & "" & HiddenField4.Text & ")"
Dim mySqlCommand3 As New SqlCommand(SQLInsert2, mySqlConn)
Dim mySqlDR3 As SqlDataReader
mySqlDR3 = mySqlCommand3.ExecuteReader()
mySqlConn.Close()

'open db connection and insert the new password3 into password table
mySqlConn.Open()
SQLInsert3 = "INSERT INTO [password] " & "([UserName], [pass_image], [pass_code]) VALUES (" & ReviewUserNameText.Text & "," & "" & (PassImage3.ImageUrl.Remove(0, 7)).Remove(6, 4) & "," & "" & HiddenField5.Text & ")"
Dim mySqlCommand4 As New SqlCommand(SQLInsert3, mySqlConn)
Dim mySqlDR4 As SqlDataReader
mySqlDR4 = mySqlCommand4.ExecuteReader()
mySqlConn.Close()

'open db connection and insert the new password4 into password table
mySqlConn.Open()
SQLInsert4 = "INSERT INTO [password] " & "([UserName], [pass_image], [pass_code]) VALUES (" & ReviewUserNameText.Text & "," & "" & (PassImage4.ImageUrl.Remove(0, 7)).Remove(6, 4) & "," & "" & HiddenField6.Text & ")"
Dim mySqlCommand5 As New SqlCommand(SQLInsert4, mySqlConn)
Dim mySqlDR5 As SqlDataReader
mySqlDR5 = mySqlCommand5.ExecuteReader()
mySqlConn.Close()

'open db connection and insert the new password5 into password table
mySqlConn.Open()
SQLInsert5 = "INSERT INTO [password] " & "([UserName], [pass_image], [pass_code]) VALUES (" & ReviewUserNameText.Text & "," & "" & (PassImage5.ImageUrl.Remove(0, 7)).Remove(6, 4) & "," & "" & HiddenField7.Text & ")"
Dim mySqlCommand6 As New SqlCommand(SQLInsert5, mySqlConn)
Dim mySqlDR6 As SqlDataReader
mySqlDR6 = mySqlCommand6.ExecuteReader()
mySqlConn.Close()

'display message"Update, Delete and Insert successfully" when complete mission and redirect the user to 'Login Page
Message.Text = "Update, Delete and Insert successfully"
Message.Visible = True
Response.Redirect("Login.aspx")
```
<asp:content id="Content1" contentplaceholderid="IntroText" runat="server">
 <asp:Label ID="ResetWiz" runat="server" Font-Bold="True" Font-Names="verdana" Font-Size="16pt" Text="Reset Wizard" BorderWidth="7px" BorderStyle="Ridge" Width="100%"></asp:Label>

 <asp:Label ID="Step1" runat="server" Font-Names="Verdana" Text="Step 1: Enter Username."></asp:Label>

 <asp:Label ID="Step2" runat="server" Font-Names="Verdana" Text="Step 2: Enter Personal Info."></asp:Label>

 <asp:Label ID="Step3" runat="server" Font-Names="Verdana" Text="Step 3: Choose 5 objects as your password object and then enter password code for each one. Password code must be equal or more than 4 character."></asp:Label>

 <asp:Label ID="invalid" runat="server"></asp:Label>
</asp:content>
</asp:content id="Content2" contentplaceholderid="FunctionRequire" runat="server">
 <asp:Panel ID="Page1" BackColor="#silver" Width="400px" runat="server">
 <table align="center">
 <tr>
 <td>
 <asp:Label ID="UserNameLabel1" runat="server" Text="Username: "></asp:Label>
 </td>
 <td>
 <asp:TextBox ID="UserName" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <asp:Button ID="P1Previous" runat="server" Enabled="False" Text="Previous" OnClick="Previous_Click" onmouseover="this.style.backgroundColor='yellow' " onmouseout="this.style.backgroundColor='buttonface' " />
 <asp:Button ID="P1Next" runat="server" Text="Next" OnClick="Next_Click" onmouseover="this.style.backgroundColor='yellow' " onmouseout="this.style.backgroundColor='buttonface' " />
 <input id="P1Reset" type="reset" runat="server" value="Clear" onmouseover="this.style.backgroundColor='yellow' ">
 </td>
 </tr>
 </table>
 </asp:Panel>
Reset.aspx, continued

" onmouseout="this.style.backgroundColor='buttonface'" />
</td>
</tr>
</table>
<asp:Panel ID="Page2" BackColor="silver" Width="400px"
visible="false" runat="server">
<table align="center">
<tr>
<td>
<asp:Label ID="NameLabel" runat="server" Text="Name: "></asp:Label></td>
<td>
<asp:TextBox ID="Name" runat="server"></asp:TextBox>
<asp:RequiredFieldValidator ID="RequiredFieldValidator1" ControlToValidate=
"Name" Display="Dynamic" ErrorMessage="Name is Required" Font-Nomes="Verdana" Font-Size="10pt"
runat="server" />
</td>
</tr>
<tr>
<td>
<asp:Label ID="ICLabel" runat="server" Text="I.C No.: "></asp:Label></td>
<td>
<asp:TextBox ID="IC" runat="server"></asp:TextBox>
<asp:RequiredFieldValidator ID="ICValidator" ControlToValidate="IC" Display="Dynamic"
ErrorMessage="IC Number is Required" Font-Nomes="Verdana" Font-Size="10pt" runat="server" />
<asp:RegularExpressionValidator id="ICRegularExpressionValidator" ControlToValidate="IC"
ValidationExpression="(^[1-9][0-9]{5}-[0-9][1-9]-[1-9][0-9]{3}$)" Display="Static" Font-Nomes="verdana"
Font-Size="10pt" runat="server">
Must be in form: XXXXXX-XX-XXXX</asp:RegularExpressionValidator>
</td>
</tr>
<tr>
<td>
<asp:Label ID="GenderLabel" runat="server" Text="Gender: "></asp:Label></td>
<td>
<asp:DropDownList id="DropDownGender" runat="server">
<asp:ListItem>Male</asp:ListItem>
<asp:ListItem>Female</asp:ListItem>
</asp:DropDownList>
</td>
</tr>
<tr>
<td>
<asp:Label ID="RaceLabel" runat="server"
<table>
<thead>
<tr>
<th>Race:</th>
<th>DropDownList</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ListItem</td>
</tr>
<tr>
<td>Chinese</td>
<td>ListItem</td>
</tr>
<tr>
<td>Indian</td>
<td>ListItem</td>
</tr>
<tr>
<td>Malay</td>
<td>ListItem</td>
</tr>
<tr>
<td>Other</td>
<td>ListItem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
<th>TextBox</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>State:</th>
<th>TextBox</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Postcode:</th>
<th>TextBox</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Country:</th>
<th>TextBox</th>
</tr>
</thead>
</table>

| E-mail: | TextBox |

```html
<asp:DropDownList id="DropDownRace" runat="server">
    <asp:ListItem>Chinese</asp:ListItem>
    <asp:ListItem>Indian</asp:ListItem>
    <asp:ListItem>Malay</asp:ListItem>
    <asp:ListItem>Other</asp:ListItem>
</asp:DropDownList>
```
ValidationExpression="^[a-zA-Z0-9]+@[a-zA-Z0-9.-]+\.(com|net|org|edu|m)$" Display="Static" Font-Names="verdana" Font-Size="10pt">
Please enter a valid e-mail address
</asp:RegularExpressionValidator>
</td>
</tr>
<tr>
<td colspan="2" align="center">
<asp:Button ID="P2Previous" runat="server" Enabled="False" Text="Previous"
OnClientClick="Previous_Click" onmouseover="this.style.backgroundColor='yellow'
" onmouseout="this.style.backgroundColor='buttonface'" />
<asp:Button ID="P2Next" runat="server" Text="Next"
OnClientClick="Next_Click" onmouseover="this.style.backgroundColor='yellow'
" onmouseout="this.style.backgroundColor='buttonface'" />
<asp:Button ID="P2Reset" runat="server" Text="Clear"
OnClientClick="P2Reset_Click" onmouseover="this.style.backgroundColor='yellow'
" onmouseout="this.style.backgroundColor='buttonface'" />
</td>
</tr>
</table>
<asp:Panel ID="Page3" BackColor="silver" Width="400px" runat="server" Visible="False">
Choose a category:
<asp:DropDownList ID="DropDownList1" DataSourceID="SqlDataSource2" AutoPostBack="true"
DataTextField="category" runat="server" />
<asp:SqlDataSource ID="SqlDataSource2" runat="server"
SelectCommand="SELECT DISTINCT [category] FROM [img]"
ConnectionString="<%$ ConnectionStrings:GPS %>" />
<table width="100%">
<tr>
<asp:datalist id="titlelist" DataSourceID="SqlDataSource1" repeatColumns="10"
gridlines="both" cellPadding="5"
OnSelectedIndexChanged="titlelist_Select"
DataKeyField="image_id" runat="server">
<ItemTemplate>
<table style="font: 10pt verdana">
<tr>
<td align="top">
<asp:ImageButton ID="ImageButton1" ImageAlign="top" ImageURL="<%# DataBinder.Eval(Container.DataItem,"image_id", "images/{0}.jpg") %>"
runat="server" CssClass="removeBorder" />
<BorderWidth="0.2cm"
onmouseover="this.className='applyBorder'"
CommandName="Select" />
<asp:label ID="ImageNameLabel"
Text='<%# DataBinder.Eval(Container.DataItem, "image_id") %>
style="color:darkred" runat="server"/>
</td>
</tr>
</table>
</SelectedItemTemplate>
<table style="font: 10pt verdana">
<tr>
<td align="top">
<asp:ImageButton ID="ImageButton2" ImageAlign="top" ImageURL='<%# DataBinder.Eval(Container.DataItem, "image_id", "images/{0}.jpg") %>
runat="server"
CssClass="removeBorder"
BorderWidth="0.2cm"
CommandName="Select" />
<asp:label ID="ImageNameLabel2"
Text='<%# DataBinder.Eval(Container.DataItem, "image_id") %>
style="color:darkred" runat="server"/>

</td>
</tr>
</table>
</SelectedItemTemplate>
</asp:datalist>
</tr>
</tr>
<tr align="top" style="padding-top:15">
<table style="font: 10pt verdana">
<td>
<img alt="image" id="DetailsImage" src="images/blank.JPG" visible="false"
runat="server" />
</td>
<td align="top">
<asp:Label id="DetailsTitle" visible="false"
runat="server" />
<asp:Label ID="SelectedImageLabel"
visible="false" runat="server"></asp:Label>

Password Code:
<input id="TextImage" size="15" maxlength="10" type="text" value="xxxx" runat="server" />
<asp:RequiredFieldValidator ID="TextImageValidator" ControlToValidate="TextImage" Display="Dynamic" ErrorMessage="Required" runat="server" />

<asp:HiddenField ID="HiddenField2" runat="server" />
<asp:HiddenField ID="HiddenField1" runat="server" />
<asp:button id="Submit" Text="Submit" runat="server"
OnClick="Submit_Click" />
<asp:Label ID="NoOfSubmitBtnClickLabel" Text="Submit Button Clicked: " visible="false" runat="server"></asp:Label>

<asp:Label ID="ImagePath" runat="server"></asp:Label>

<asp:Label ID="Message1" Text="Image already chosen!! Please choose another image!!" visible="false" runat="server"></asp:Label>

<asp:Label ID="Message2" visible="false" runat="server"></asp:Label>

</td>
</tr>
</table>

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
```
SelectCommand="SELECT [image_id], [category] FROM [img]
WHERE ([category] = @category)"
ConnectionString="<%$ ConnectionStrings:GPS %>">
<SelectParameters>
  <asp:ControlParameter ControlID="DropDownList1"
  Name="category" PropertyName="SelectedValue"
  Type="String" />
</SelectParameters>
</asp:SqlDataSource>
</asp:Panel>
<asp:Panel ID="Page4" BackColor="silver" Width="400px"
runat="server" Visible="False">
<table align="center">
<tr>
  <td>
    <asp:Label ID="ReviewUserName" runat="server"
    Text="User Name: "></asp:Label>
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="ReviewUserNameText" runat="server">
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="ReviewName" runat="server"
    Text="Name: "></asp:Label>
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="ReviewNameText" runat="server">
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="ReviewIC" runat="server"
    Text="I.C. No. :"></asp:Label>
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="ReviewICText" runat="server">
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="ReviewGender" runat="server"
    Text="Gender: "></asp:Label>
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="ReviewGenderText" runat="server">
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="ReviewRace" runat="server"
    Text="Race: "></asp:Label>
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="ReviewRaceText" runat="server">
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="ReviewAddress" runat="server"
    Text="Address: "></asp:Label>
  </td>
</tr>
<tr>
  <td>
    <asp:Label ID="ReviewAddressText" runat="server">
  </td>
</tr>
</table>
```
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>State:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postcode:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-mail:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You have selected five images.
<asp:button ID="EditBtn3" text="Change Picture" OnClick="EditBtn3_Click" runat="server" />
</td>
</tr>
<tr colspan="3">
<td>
<asp:Image ID="PassImage4" ImageUrl="images/blank.JPG" runat="server" />
<input id="TextImage4" size="10" type="text" runat="server" />
<asp:button ID="EditBtn4" text="Change Picture" OnClick="EditBtn4_Click" runat="server" />
</td>
</tr>
<tr colspan="3">
<td>
<asp:Image ID="PassImage5" ImageUrl="images/blank.JPG" runat="server" />
<input id="TextImage5" size="10" type="text" runat="server" />
<asp:button ID="EditBtn5" text="Change Picture" OnClick="EditBtn5_Click" runat="server" />
</td>
</tr>
<tr>
<td colspan="2">
<asp:button ID="ConfirmBtn" text="Confirm" OnClick="ConfirmBtn_Click" runat="server" />
<asp:Label ID="HiddenField3" runat="server" />
<asp:Label ID="HiddenField4" runat="server" />
<asp:Label ID="HiddenField5" runat="server" />
<asp:Label ID="HiddenField6" runat="server" />
<asp:Label ID="HiddenField7" runat="server" />
<asp:Label ID="HiddenField8" runat="server" />
<asp:Label ID="HiddenField9" runat="server" />
</td>
</tr>
<tr colspan="2">
<td>
<asp:Button ID="P4Previous" runat="server" Text="Previous" OnClick ="Previous_Click"
onmouseover="this.style.backgroundColor='yellow';"
onmouseout="this.style.backgroundColor='buttonface'" />
<asp:Button ID="P4Next" runat="server" Text="Next" OnClick ="Next_Click"
Enabled="false"
onmouseover="this.style.backgroundColor='yellow';"
onmouseout="this.style.backgroundColor='buttonface'" />
<input id="P4Reset" type="reset" disabled=
="disabled" runat ="server" value="Clear"
onmouseover="this.style.backgroundColor='yellow';"
onmouseout="this.style.backgroundColor='buttonface'" />
</td>
</tr>
</table>
password_failed_login.aspx

```vbnet
<%@ Page Language="VB" %>
<script runat="server">
Sub Page_Load(ByVal Sender as Object, ByVal E as EventArgs)
    lblMessage.Text = "The password you " 
    & "entered were not found. " 
    & "Your email has been successfully sent."
End Sub
</script>
<html>
<head>
<title>Failed Log In</title>
</head>
<body Text="black" Link="darkred" Vlink="darkred" Alink="red">
<form runat="server">
<center>
<asp:Label id="lblTitle" BorderWidth="7px" BorderStyle="Ridge" Width="100%" Font-Size="25pt" Font-Names="Verdana" Text="Failed Log In" runat="server" />
</center>
<p>&nbsp;</p>
<asp:Label id="lblMessage" Font-Size="12pt" Font-Names="Verdana" runat="server" />
</form>
</body>
</html>
```
Appendix D – CRGPS’s Source Code (Failed Login)

username_failed_login.aspx

```vbnet
@ Page Language="VB"
<script runat="server">
Sub Page_Load(ByVal Sender as Object, ByVal E as EventArgs)
    lblMessage.Text = "The user name you " & "entered were not found. " & "Please call support for more information."
End Sub
</script>
<html>
<head>
<title>Failed Log In</title>
</head>
<body Text="black" Link="darkred" Vlink="darkred" Alink="red">
<form runat="server">
    <center>
        <asp:Label id="lblTitle" BorderWidth="7px" BorderStyle="Ridge" Width="100%" Font-Size="25pt" Font-Names="Verdana" Text="Failed Log In" runat="server"/>
    </center>
    <p>&nbsp;</p>
    <asp:Label id="lblMessage" Font-Size="12pt" Font-Names="Verdana" runat="server"/>
</form>
</body>
</html>
```

Default.master

```vbnet
@ master language="VB"
<html>
<head id="Head1" runat="server">
    <link rel="stylesheet" href="StyleSheet.css" type="text/css" />
</head>
<body>
<form id="Form1" runat="server">
    <div>
        <table class="main" cellspacing="0" cellpadding="2">
            <tr class="header">
                <td colspan="2" class="header"/>
            </tr>
            <tr valign="top">
                <td class="sidebar" rowspan="2">
                    <a id="A1" href="home.aspx" runat="server" shape="rect" style="font-size: 12pt; font-family: Verdana;">Home</a><br/>
                    <h4>Functions</h4>
                    <a id="A2" href="Functions/Login.aspx" runat="server" shape="rect" style="font-size: 10pt; font-family: Verdana;">Login</a><br/>
                    <a id="A3" href="Functions/Registration.aspx" runat="server" shape="rect" style="font-size: 10pt; font-family:
```
Register

Reset

</td>
</tr>
</table>

<td class="ContentPlaceHolder id="SectionContents" runat="server">

<h3>Welcome to my Cued Recall Graphical Password System website!</h3>

In this research, a graphical password system using challenge response authentication method is presented. A system is created in such a way it will provide a test which is the challenge to the user when the user want to login. Whereas the user need to provide the answer which the user make with the system at the registration process which is the response to the system correctly in order for him to log on successfully.

In the authentication process, the user is requested for the username. The user is given three chances to enter the username correctly. At third failed log in attempt, user will be force to leave the log in page. If the username is correct then the user is directed to the second page, where 3 pass-objects that are randomly chosen from the user’s pass-objects are displayed on the screen together with another 47 decoy objects from database. The user has to input a string of textual characters for each pass-object shown on the screen and a fake pass-code. The proposed graphical password system will use the easy recall method to help increase the user memorability. The first alphabet for each pass-code to each pass-object is displayed as a cued to the user. The proposed graphical password system will also adopt the fault point method, in which the system would request the user to enter a fake pass-code to confuse the person standing behind who will try to peek over your back in order to obtain private information. The answer required is based on query-directed password’s idea, where the user has to input the first 3 characters of each pass-code for each pass-object as the answers to the system. The system will fetch all the user’s pass code from the database and execute decryption process on it and compare the user entered pass-code to the decrypted pass-code from the database. If the comparison matches, then the user is authenticated successfully. All of the three pass-objects association pass-code must match any of the three decrypted pass-code from the database. Username will be disabling out after three failed log in attempts. At third failed log in attempt,
user will be force to leave the log in page and an e-mail containing user’s original pass-objects and the pass-objects association pass-codes will be sent to the user’s email using the user’s e-mail address in the user detail. In the registration process, the user is required to fill in their detail such as username, name, identification number, email address, and so on. The user will be directed to a page where they can create their pass-objects and the pass-objects association pass-code. To create a password, a user has to choose five pass-objects and to create words to associate with each pass-object. The user would need to remember textual characters that are related with each of their pass-objects among the 125 pass-objects, which is categorise in five categories, such as animal, flower, bird, insect and reptile. For example, the user can choose a cat image as his first pass-object and assign 'kitty' the images pass-code. The user could also assign any number, alphabet or symbol on the keyboard as part of the pass-code. After finishing the selection process, the system would display a review page automatically. The user will need to confirm on the selection of pass-objects and their association pass-code. This confirmation is done by clicking on the “Confirm” button, which will save the user’s information into the database. If the user want to change the pass-objects and the pass-objects association pass-code, the user could do it in the review page before the user’s information is save into the database. The pass-objects association pass-code will be save into the database in RSA encryption format.

In the reset process, the user is required to enter their username to the system. If the username is found in the database then the user is directed to the second page. In the second page, the user’s detail is displayed. The user can change their personal information in the second page. Then the user is directed to a page to change their pass-objects and the pass-objects association pass-codes. The user can choose a new selection of his 5 pass-objects and their association pass-code for each pass-object from five themes of pictures such as flower, animal, bird, insect and reptile. After the selection, the system will direct the user to the review page where user can confirm the selection or make change to the selection before the user’ data is saved into the database with a click on the Confirm.
Default.master, continued

```html
<button>
</asp:ContentPlaceHolder>
</td>
</tr>
<tr>
<td class="footer">
<asp:label id="Footer" font-italic="true"
text="A Project Submitted for the Master of
Computer Science in the Faculty of Computer
Science, University of Malaya" runat="server" />
</td>
</tr>
</table>
</div>
</form>
</body>
</html>
```

SectionFunctions.master

```html
<%@ master language="VB" masterpagefile="~/Default.master" %>
<asp:content ID="Content1" contentplaceholderid="SectionContents" runat="server">
<asp:contentplaceholder id="IntroText" runat="server"/>
<br /><br />
<asp:contentplaceholder id="FunctionRequire" runat="server"/>
</asp:content>
```

Global.asax

```html
<SCRIPT LANGUAGE="VB" RUNAT="Server">
Sub Application_OnStart
    Application("UserNameMaxTries") = 3
    Application("PasswordMaxTries") = 3
End Sub
Sub Session_OnStart
    Session("UserNameNumTries") = 0
    Session("PasswordNumTries") = 0
End Sub
</SCRIPT>
```

StyleSheet.css

```css
body {
    margin-top:0;
    margin-left:0;
    margin-right:0;
    margin-bottom:0;
}

a {
    color : Yellow;
    font-weight:bold;
    font-family: verdana;
    font-size: 10pt;
}
```
StyleSheet.css, continued

table.main
{
 border-width: 0;
 border-style: none;
 height: 100%;
 width: 100%;
}

td
{
 font-family: Verdana;
 font-size: 10pt;
}

td.sidebar
{
 width: 100px;
 background-color: #0080ff;
 padding-left: 10px;
 padding-top: 10px;
}

tr.header
{
 height: 138px;
}

td.header
{
 width: 150px;
 background-repeat: no-repeat;
 background-color: white;
 background-image: url(Functions/images/headbar.jpg);
}

td.body
{
 padding: 10, 10, 10, 10;
 .applyBorder{border:0.2cm solid blue};
 .removeBorder{border:0.2cm solid gainsboro};
}

td.footer
{
 padding-left: 10;
}

web.config

<?xml version="1.0"?>
<configuration>
 <appSettings/>
 <connectionStrings>
 <add name="GPS"
 connectionString="Server=(local)\SQLExpress;Integrated Security=True;Database=GPS;Persist Security Info=True"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>
 <system.web>
 <compilation debug="true" strict="false" explicit="true"/>
 <pages>
 <namespaces>
<clear/>
<add namespace="System"/>
<add namespace="System.Collections"/>
<add namespace="System.Collections.Specialized"/>
<add namespace="System.Configuration"/>
<add namespace="System.Text"/>
<add namespace="System.Text.RegularExpressions"/>
<add namespace="System.Web"/>
<add namespace="System.Web.Caching"/>
<add namespace="System.Web.SessionState"/>
<add namespace="System.Web.Profile"/>
<add namespace="System.Web.UI"/>
<add namespace="System.Web.UI.WebControls"/>
<add namespace="System.Web.UI.WebControls.WebParts"/>
<add namespace="System.Web.UI.WebControls.WebParts"/>
</namespaces>
</pages>
<authentication mode="Windows"/>
</system.web>
</configuration>