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a b s t r a c t

Various results in thermodynamics developed recently are brought into focus by further
refinement to set in less ambiguous form topics connected to irreversibility and the so
called ‘‘Clausius Inequality’’. This singular ‘‘Clausius Inequality’’ for both closed and open
systems was traditionally deduced from the Riemann ‘‘integration’’ of closed Carnot cycle
loops for irreversible transitions. Evidently topological problemsmight be expected to arise
concerning boundary conditions when ‘‘open’’ and ‘‘closed’’ systems exists simultaneously
in such a scheme. It has hitherto been assumed that in this scheme, only one central
Clausius Inequality can exist coupling all processes. Based on a new recent development
of open system Carnot cycles, it is shown that other analogous inequalities can be
derived, due to the presence of another fundamental entropy state function derived
in the recent development, implying non-singularity. Their properties are such as to
indicate that no new non-equilibrium entropy can arise from the inequalities as has been
proposed over the decades. It is shown that a sequence of points along a non-equilibrium
state space must have excess variables augmenting those for the equilibrium situation,
which demonstrates that the often used Principle of Local Equilibrium (PLE) is only an
approximation, implying that far-from-equilibrium theories should be developed ab initio
from irreversible dynamical laws rather than from PLE. Examples presented from actual
computations for both systems in equilibrium and non-equilibrium appears to support this
deduction. Large scale and extensive thermodynamical theories have been created based
on the assumption of a single Clausius-like inequality, such as those stemming from the
very influential and extensive Truesdale school, and so such pervasive developments are
also open to question.

© 2008 Published by Elsevier Ltd

1. Carnot cycle analysis for open systems 1

Recently [1], a new development for an open system thermodynamical theory was presented, where another entropy 2

form was shown to exist, implying that there exists at least two forms of the fundamental Clausius inequality, each form 3

pertaining to the entropy type. Previously, from the time of the establishment of the Second Law by Clausius and others in 4

the latter half of the nineteenth century, it was assumed that only one form existed, fromwhichmany fundamental theories 5

were constructed that could couple all the heat and thermodynamical energy terms so that they fulfilled this inequality. 6

That inequality also provided bounds concerning entropy production in thermodynamical systems and processes. Here, we 7

focus and refine on the details of these inequalities which were only developed in passing previously. Clearly the current 8

development implies a need to reassess slowly the entire structure laid in the past. Below, a resume of the new development 9

is provided before developing the inequalities with some applications due to results from computations.
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Fig. 1. A system about reversible cycle abcda.

An open Carnot system operating between two reservoirs at temperatures T1 and T2 are given and its properties during1

summation limits have been outlined [1]. A typical cycle is given in Fig. 1, where the state space Σ = {P,V,m} denote2

the system intensive and extensive variables and the mass amounts present, respectively; m = {m1,m2 . . .mi . . .mn} is3

the set of ‘pure’ substances injected into the open system; m ∪ V are the extensive quantities such that −P · (δV + δm)4

represents the work gained by the system for arbitrary displacements (δV+ δm) in multidimensional space (P,V,m) with5

mass exchange δmi. In addition, a, b, c , d also represents the state variables Σ . The two basic cycles are Ciso, where mass6

in inserted at the isothermal segments of the Carnot cycle and Cadia, where they are inserted without heat exchange at the7

adiabatic portions. For cycles Ciso, δQ
T1
a−a′,sys is the heat absorbed without mass change along a − a′, where masses δmi are8

injected reversibly via semi-permeable membranes at constant temperature along a′
− b accompanied by the simultaneous9

exchange of heat −δQ T2
c−c′, sys, and the heat absorbed along cc ′ is −δQ T2

cc′ and when mass is extracted at c ′d the heat gained10

by diathermal heat transfer through the boundary is −δQ T1
inj, i via the system isothermal boundaries, whereas for Cadia cycles11

there is no temperature control for the system during reversible exchange of masses. The temperatures along isotherms ab12

and cd is T1 and T2, respectively; for any of these cycles, heat is exchanged with the thermal reservoirs labeled T1 and T213

held, respectively, at the temperatures T1 and T2 and there is also the work done to transport material i from the supply cell14

Cpi at standard state (ss) (T0, p0) to the surface of the reactor cell ∆W form
i , where the element δmi is in equilibriumwith the15

reactor cell through the semi-permeable membrane with pressure–temperature variables (pi, T ). The normal work terms16

in a system transition are denoted δW for transitions along state Σ when there is no mass exchange (as in a normal Carnot17

engine), with superscripts and subscripts indicating the transition coordinates; δWinj denotes the work of injecting the18

specified material into the reactor cell. The total work done [1] on the environment by the system ∆Wtot,iso and by the heat19

pumps (all working cyclically) about a → b → c → d is20

∆Wtot,iso = −δW T1
aa′ − δW T2

cc′ − δWbc − δWda + δV (T1,pi,b)
ss − δV (T2,pi,d)

ss + ∆W form
i (pi,b, T1) − ∆W form

i (pi,d, T2)21

− δWinj(a′b) + δWinj(c ′d). (1)22

Total heat lost at T1 reservoir ∆Q1,tot,iso is23

∆Q1,tot,iso = δQ T1
aa′,sys + δQ T2

inj,i + T1δmi∆S
(T1,pi)
i,ss . (2)24

Total heat gained at T2, ∆Q2,tot,iso isQ225

∆Q2,tot,iso = δQ T2
c′c,sys − δQ T2

inj,i + T2δmi∆S
(T2,pi,c′d)
i,ss26

= δQ T2
cc′,sys − δQ T2

inj,i + T2δmi∆S
(T2,pi,c′d)
i,ss (3)27

where ∆S
(T ,pi)
i,ss =

(∫ (pi,T )

ss
đQi
T

)
is the convected entropy per unit mass for substance iwith heat contribution deriving from28

the indicated reservoir. More explicitly,29

δV (T1,p1)
ss = ∆V (T ,p1)

i,ss δmi = Tδmi∆V (T ,p1)
i,ss − ∆Q (T ,p1)

i,ss δmi30

is the work done on the environment for the pumping mechanism of species i with mass δmi where ∆Qi,ss =
∫ (pi,T )

ss đQ31

and ∆Q (pi,T )

i = T
(∫ (pi,T )

ss
đQi
T

)
δmi = Tδmi∆S

(T ,pi)
i,ss . The corresponding results for an adiabatic Cadia cycle where mass is32

extracted or injected is (subscripted adia. refers to the Cadia cycle and similarly other subscripts refer to the path or state)33

∆Wtot,adia = −δW T
ab − δW T2

cd − δWb′c − δWd′a + δV
(T1,pi,bb′ )
ss

− δV
(T2,pi,d′ )
ss + ∆W form

i (pi,b, T1) − ∆W form
i (pi,d, T2). (4)34

∆Q1,tot,adia = δQ T1
ab,sys + δQ T1

inj,i + T1δmi∆S
(T1,pi)
i,ss . (5)35

∆Q2,tot,adia = δQ T2
dc,sys + δQ T2

inj,i + T2δmiS
(T2,pi(c′d))
i,ss . (6)36
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There is no heat absorption about an adiabatic segment. For a mixed elementary loop cycle Ccomb where mass is injected 1

(extracted) at an isothermal pathway e.g. ab and extracted (injected) at the adiabatic pathway e.g. da, we still derive 2

∆Wtot,comb, ∆Q1,tot,comb and ∆Q2,tot,comb, as above. For the above cycles (denoted C) operating between temperature points 3

1 and 2, and for general transitions the following (Theorems 1–3) have been proven [1]. 4

Theorem 1. Each elementary cycle C fulfills ∆Q1,tot,C
T1

−
∆Q2,tot,C

T2
= 0 for optimized Carnot trajectories. 5

Theorem 2. A perfect differential dS =
đQtot
T for the state function S exists, given by 6

∆S =
đQdia

T
+

n∑
i=1

∆S
(T1,pi)
i,ss δmi 7

where đQtot = đQdia + T
∑n

i=1 ∆S
(T1,pi)
i,ss δmi and đQdia = đQsys +

∑n
i=1 đQinj,i. 8

The total reversible diathermal heat transfer increment đQdia consists of đQsys which is the heat absorption by the diathermal 9

boundary of the systemwhen there is no mass transfer taking place and to đQinj,i when there is a transfer of substance i of amount 10

δmi. 11

Theorem 3. There exists an entropic function of state Sdia with differential given by dSdia =
đQdia

T where Qdia is a local function 12

representing the total heat absorption of the system through a diathermal boundary as above. 13

The traditional Clausius Inequality was derived using some of the following well-founded axioms. 14

Axiom 1. It is impossible to construct an engine working in a cycle, which will produce no other effect than the transfer of 15

heat from a cooler body to a hotter one. 16

Axiom 2. TheΣ variables vary continuously in the system transitions and are differentiable and in particular them variables 17

vary continuously evenwithin a single open Carnot loop jwhich is an element in the Riemann sum, so that no finite instances 18

of measured mass injections/extractions can occur for any j loop. 19

Axiom 3. The energy functions have perfect total derivatives i.e. they are state functions. 20

Axiom 4. Irreversible pathways traverse a pathway along a sequence of points exactly that of a reversible pathway where 21

the Σ variables are concerned in an arbitrary circular, but yield different diathermal heat absorption increments for each 22

element j of the Riemann summation. 23

As stated in the introduction, the existence of the state function Sdia implies that the form of the Clausius inequality is 24

not obvious and must be carefully constructed based on the available facts. 25

Theorem 4. The Clausius inequality corresponding to Theorem 2 for the non-local heat increment is
∮ đQtot

T ≤ 0. 26

Proof. The optimized elementary reversible Carnot cycle yields is zero from Theorem 1 for fixed temperature of reservoirs, 27

so that the non-optimized cycle can only be ∆Q1,tot,C
T1

−
∆Q2,tot,C

T2
≤ 0 for any elementary loop (Axiom 4). Taking N cycles 28

(N → ∞) to complete the Riemann sum for any loop yields limN→∞

∑N
j=1

(
∆Q1,tot,C,j

Tj
−

∆Q2,tot,C,j
Tj

)
≤ 0 ⇒

∮ đQtot
T ≤ 0. � 29

The proof that follows require Axioms 1 and 2. The đQtot heat increment is a combination of local and non-local heat 30

terms. 31

Theorem 5. The Clausius Inequality corresponding to Theorem 3 is
∮ đQdia

T ≤ 0. 32

Proof. One must consider whether optimized processes are involved or not in the partitioned local heat increment đQdia 33

which is not similar to the non-local total heat increment đQtot, where an optimized process is involved to derive an 34

inequality by examining the energy transfer terms with the supply cells Cpi. Let Ui,um be the intensive energy variable 35

relative to the supply cell to extract unit mass of substance i to state Σ of the primary cell (system) at equilibrium with 36

it through a semi-permeable membrane, so that the actual energy increment transferred to the surface prior to any work 37

being done on it is dUi = Ui,um(Σ)dmi for substance i. Gibbs’ integration leads to the total energy (which has a perfect 38

differential for it is a state function) of superficial –meaning surface- transfer U being U =
∑m

i=1 miUi,um(Σ) =
∑m

i=1 miUi 39

where Ui = miUi,um(Σ). Since dU =
∑m

i=1 dmiUi,um(Σ) for an m-substance system, another Gibbs–Duhem type equation 40∑m
i=1 mid(Ui,um(Σ)) = 0 is proven to exist here. For any jth open Carnot engine, the energy associated with the convected 41

mass prior to injection is written
∑m

i=1 dmi,jUi,um,j(Σ) where the sign of dmi,j determines injection or extraction. For this 42

cycle, the work energy to inject (extract) dmk by the environment is −Winj,k,j(Σ)dmk and the external work done by the 43

machine is W j
ext =

∮
P · dV +

∑m
k=1

∮
∂mk

Winj,k,j(Σ)dmk. In one cycle, the whole system is returned to the original state. 44
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From Axiom 2, for the jth cycle, define∆Ui =
∮

m

∑m
i=1 dmiUi,um(Σ)where Q j

1, Q
j
2 are the total diathermal heat absorptions1

in this cycle at temperatures T1, T2, respectively. Clearly, ∆Ui = 0 (Axiom 3). The connection of the Q ’s to the diathermal2

entropy is
∮
dS =

∮ đQtot
T = limN→∞

∑N
j=1

(
Q j
1

T1
−

Q j
2

T2

)
= 0. The conservation of energy for each cycle loop j (Axiom 3) is3

∆Uj + Q j
1 − Q j

2 − W j
ext = 0. (7)4

As j → ∞ to complete a loop in Σ space,
∮
dUi =

∑N
j=1 ∆Uj = 0, and so from (7)5

limN→∞

N∑
j=1

∆Uj + Q j
1 − Q j

2 − W j
ext = 0

⇒

∮
đQdia =

∮
đWext = ∆Wext

(8)6

where ∆Wext, the total work done by the system in any arbitrary loop in Σ space, equals the total reversible diathermal7

heat absorbed. The above was derived implicitly in [1] when deriving a Principle of Correlation. For each j cycle, the virtual8

closed Carnot engine has work done đW j
vir , the maximum given by đW j,max

vir = Q j
1

(
T j1−T j2

T j1

)
fromwhich energy conservation9

gives Q j
1

Q j
2

=
T1
T2
. Now, from Axiom 4, the temperatures for the virtual and real system are the same at the diathermal ends,10

and if Q j
1 is fixed, then so is Q j

2. If this Q
j
2, denoted Q j′

2 is different from the open system Q j
2, then for this cycle running one11

engine against another would violate Axiom 1 for the reversible situation, hence they must be the same. Comparing with12

Eq. (7) yields Q j
1 − Q j

2 = đW j,max
vir = đW j

ext − ∆Uj, so that summing over all j loops yield for the reversible case13 ∮
đWvir = ∆Wvir =

∮
đWext = ∆Wext (9)14

where the work done by a closed Carnot engine is precisely that of the open system; this is the Principle of Correlation15

developed previously [1]. If the efficiency of the irreversible engine exceeded that of the closed Carnot cycle at a particular16

j cycle, then as before running this system coupled to a reversible system would lead to a violation of Axiom 1. Hence if the17

actualworkW j
ext is less than themaximumreversiblework for a particular j cycleW j

ext, thenW j
ext < W j,max

ext ⇒

(
Q j
1

T1
−

Q j
2

T2

)
<18

0 and summing this as j → ∞ (as in Theorem 4) over a closed loop leads to
∮ đQdia

T ≤ 0. �19

Two types of Clausius inequalities are derived, where the heat term in Theorem 5 is local. The above results contradicts20

Bhalekar’s alleged proof [2a] that the inequality does not exist for open systems and also the rebuttal [2b] since no heat21

terms are discriminated and no proven state functions were used (only assumed), and where singular forms were assumed.22

2. Theorems and applications23

2.1. Non-existence of excess entropy function of state24

Two types of heat increment terms are used here, both satisfying Clausius-type inequalities denoted đQ[q] : q =25

{adia, tot}where the adia subscript refers to the adiabatic heat increment, and the other to the non-local total heat increment26

as discussed in Theorems 4 and 5, with the associated entropy forms dS[q] forms, respectively, where dS[tot] ≡ dS of27

Theorem 2. There have been attempts by a tradition set by Eu [3a–j] and others [4a–c] over the last three decades to derive a28

new entropy form based on heat compensation from the Clausius inequality. Most irreversible systems are open in nature,29

but the theorem was derived initially using the traditional closed Clausius loop, and later with Gibbs’ thermodynamical30

assumptions. A proof for closed systems that these new entropy forms cannot obtain was provided recently [5], and since31

the mathematical structure of both open and closed systems are the same as shown above, the results given in [5] may be32

generalized for the two q forms q = {adia, tot} given above. For any two points A, B ⊂ Σ define two pathways connecting33

these points in a continuous curve, PAB and P ′

AB which are along a reversible and irreversible pathway, respectively. Writing34

the Clausius integral as −N[q] and integrating between A and B for two paths PAB and P ′

AB about a closed loop yields35

−N[q] =
∮

irrev
dQ[q]
T ≤ 0 or N[q] = ∆S[q] −

∫ B
A,irr

dQ[q][P ′
AB]

T ≥ 0 where ∆S[q] =
∫ B
A,rev

dQ[q][PAB]
T is the reversible entropy36

change between A and B.37

Lemma 1. The variable N[q] must be a functional of the variable A, B and path P ′

AB, i.e. N[q] = N[q](A, B, P ′

AB).38

Proof. Since∆S[q] is the integral of a perfect differential, it is a function of the endpoints of the integral, and the irreversible39

integration along P ′

AB is path dependent, hence the result. �40
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Defining N[q] =
∮
dN[q], the above notation leads to

∮ (
dQ[q]
T + dN[q]

)
= 0, suggestive of a perfect differential dΣ ′

[q] = 1

dQ[q]
T + dN[q]. The following determines the issue. 2

Theorem 6. The differential dΣ ′

[q] =
dQ[q]
T + dN[q] is not exact and is non-local. 3

Proof. Replacing the N , Q , S, Σ variables in Reference [5] (Sections 3(a) and 3(b)) by N[q], Q[q], S[q], Σ ′

[q] and repeating the 4

argument for our general system here, where the algebra is isomorphous because of the proof of the Clausius inequality here 5

for general systems, the above theorem follows since it is proven there [Eq. 13(b), 5] that dΣ =
dQ
T + dN in the notation of 6

Reference [5] is not an exact differential and furthermore is non-local. � 7

Eu has offered a reconciliation in that if his entropy is viewed as coincident with the non-equilibrium entropy, then there 8

is convergence between E.I.T. [4c, d] and his approach [p. 771; 3c]. 9

2.2. Considerations in Principle of Local Equilibrium (PLE) 10

This principle [p. 23, 6a: p. 7, 6b: p. 7, 6c] states that a non-equilibrium steady state system may be locally described 11

by variables that describe an equilibrium system, and that the heat transfer and other flux terms arise from the gradients 12

in the equilibrium variables across the entire system. Some have suggested this principle to be very strong on the basis of 13

a restricted simulation and other studies of particles with an interparticle potential [7a–c]. Theorem 7 shows that there 14

are augmenting variables to irreversible systems without contradicting Axiom 4, which is used to derive the theorem. 15

Implications are then discussed. 16

Theorem 7. ∃ an infinite number of irreversible heat pathways P ′

AB arbitrarily close to a reversible one PAB due to augmenting 17

variables ∆. 18

Proof. Consider two diathermal pathways forming a closed loop in the sequence A → B → A along PAB and then back along 19

the irreversible segment P ′

BA. From Axiom 2, the loop is a Riemann sum of j open Carnot cycles, where a typical member 20

is located about points {a1, b1, b2, a2}, where segments (a1, b1) ∈ PAB, (b2, a2) ∈ P ′

AB and where segments (b1, b2) ∈ b′
21

and (a1, a2) ∈ a′ are adiabatic. Let the increment of heat absorbed along (a1, b1) be Q1,[q] at temperature T1 and the heat 22

absorbed (which has an implied negative sign since at this temperature T2 the heat is ejected) about (b2, a2) be Q2,[q] for the 23

forms [q] with associated entropy S[q]. When q = dia, the system refers to diathermal heat exchange about the paths PAB 24

and P ′

BA and the work done W given below refers to the work done by the system on the environment, but when q = tot a 25

non-local form of heat transfer is implied, as with the work as given in (1)–(6). For what follows, we drop the usage of the 26

[q] subscript notation, for the analysis pertains to both. At optimal efficiency op, Q1,op + Q2,op = −Wop, where Wop is the 27

total work done on the system about the j cycle {a1, b1, b2, a2} and Wop = Q1(f (T1, T2)). Since path (a1, b1) is reversible, 28

|Q2(P ′

BA)| about (a2, b2) segment is |Q2| = Q1 + Wop + δ(a2, b2) where δ(a2, b2) > 0 is the dissipation function about 29

segment (a2, b2) and if an external field F is present, then δ(a2, b2, F) > 0. Excluding external forcing conditions (fields are 30

part of the Σ coordinates), δ is not dependent on the reversible PAB pathway, since |Q2| = Q1(Σ) + Wop(Σ) or along the 31

path, the differential of heat is đQ2 = H(Σ) • dΣ for a reversible system (e.g. for a perfect gas at an isotherm, đQ2 = PdV ) 32

whereas δ is partially dependent on boundary conditions and field gradients; for if it were completely dependent on Σ 33

only, then there would be the expression đQ2,irr = H(Σ) • dΣ − δ′(Σ) • dΣ = F(Σ) • dΣ , implying a fixed dissipation 34

amount with no control which would make F(Σ) indistinguishable from H(Σ) for arbitrary Σ , including when the cycle is 35

reversible. Hence there must exist at least one control parameter λ in the dissipation function δ′(Σ, λ) and this λ becomes 36

the extraneous variable not in Σ . On the other hand, Axiom 4 states ∃ a sequence of points about (a2, b2) ⊂ PAB(Σ2) ⊂ Σ 37

(Σ2 represents the sequence of points for the PAB path at the lower portion of the j cycle where heat Q2 is dissipated). Thus 38

it follows that P ′

BA = {PBA, ∆} where ∆ are augmented variables not in Σ , so that P ′

BA has the points in PBA as a subsequence 39

of its entire set. � Q3 40

Corollary 1. It is impossible for any irreversible pathway P ′

BA to contain the same sequence of points as PBA for any path PBA. 41

Remark 2. Theorem7 contradicts the PLE or ‘‘local equilibriumhypothesis’’ as definedhere since PBA ⊂ Σ exists for the non- 42

equilibrium sequence, but ∃ also the ∆ variables, where ∆ 6∈ Σ . Theory does not give the explicit form for ∆, but physical 43

considerations suggests that ∆ includes gradients of the Σ coordinates with respect to the space and time coordinates. 44

2.3. Examples from computations corroborating the above 45

Extensive computations have been carried out on the hysteresis dimer molecule concerning the thermodynamical 46

distribution of variables in both the equilibrium and non-equilibrium regime [8,9] and the details of the computations 47

may be found in these references. The system consists of 4096 atoms A that can react to form dimers A2 according to 48

the reaction 2A ↔ A2. Typically, the MD cell was divided up into 64 slabs orthogonal to the axis of the MD cell where 49

thermostats were placed at both ends of the rectangular shaped cell to fix the temperature at those ends. In the Case 2 50
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Fig. 2. Flux currents in non-equilibrium system.

Fig. 3. Divergence of fluxes.

situation, the temperature is elevated at the RHS (in the vicinity of layer 64) and also all dimers were converted to atoms1

artificially to atoms so that a steady state current flux JA, JA2 due to atoms and dimers, respectively, could be set up. As2

pointed out in [9], the linear irreversible theory based on the principle of local equilibrium does not support the presence3

of fluxes at the steady state. Fig. 2 shows that this theory does not obtain for large layer numbers at the RHS of the cell since4

fluxes are clearly manifested there. To ensure that this was not an artifact, the divergence of the currents had to be worked5

out. With stationary sources and sinks σ (σf and σb are the rate of formation and breakdown of dimer in unit time and6

volume, respectively, throughout the cell), the conservation equations reads, respectively, ∂cA2/∂t = −∇ · JA2 +σf −σb and7

∂cA/∂t = −∇·JA−2σf +2σb where the c ’s are the concentrations. The steady state condition is∇·JA = −(2σf −σb) = −2σr8

and ∇ · JA2 = σr with (σf − σb) = σr ; σr is a scalar flux and at thermodynamical equilibrium σr = 0. These equations also9

mean 2∇.JA2 + ∇.JA = 0. If PLE were valid for non-equilibrium steady states, the JA, JA2 fluxes would vanish; clearly here,10

this is not the case. To check for flux conservation, the divergence term is discretized by integration over one layer, using11

the trapezoidal rule, where
∫ i
i−1 ∇ · JA2dV =

(σr (i)−σr (i−1))∆V
2 = JA2, dif(i) = JA2(i) − JA2(i − 1) the layer having volume12

∆V . Similarly, JA, dif(i) = JA(i) − JA(i − 1) = −(σr(i) + σr(i − 1))∆V ; defining Jd(i) = 2JA2, dif(i) + JA, dif(i) leads to13

Jd(i) = 2JA2, dif(i) + JA, dif(i) = 0 which is a form of the divergence theorem with conservation of matter. Since the σ ’s are14

all determinable, so the JX,dif terms can be calculated. Fig. 3 gives both the σ terms and also the Jd(i) vector, which should15

be zero. Within experimental error, this appears to be the case.16
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Fig. 4. The logarithm of the equilibrium constant for equilibrium and non-equilibrium systems.

Finally, Fig. 4 is the distribution of the concentration ratio (the equilibrium constant at constant activity where Keq =
[A2]
[A]2

1

with two separate cases; Case 1 iswhere there is no breaking of bonds andwhere the temperature gradient is in the opposite 2

direction to that for Case 2, where at the higher temperature reservoir (or thermostat layer) at higher layer number, an 3

algorithm is applied that breaks bonds so as to form a current. The runs for Case 1 and 2 are separate, but plotted on the 4

same graph for economy, they do not have the same temperature gradient distribution and hence there is an intersection 5

in the middle portion of the graph due to this fact. In Fig. 4, the actual Keq for the non-equilibrium run is plotted with the 6

values derived from a strictly equilibrium run. Within experimental error, we observe that there is reasonable coincidence 7

of the equilibrium and non-equilibrium runs except for Case 2 at high temperature (corresponding to higher layer value as 8

well in this case). At low temperatures, Keq is very low and therefore highly inaccurate with a large fluctuation in value. If 9

the principle of local equilibrium is always true, then there would be coincidence even at this regime, which is clearly not 10

the case. We hold that these results are consistent with the theory that we have developed here. 11

In a recent mesoscopic rendering [7b], the ambiguous Gibbsian equations [1] presuming the validity of PLE was utilized 12

to model ‘‘far from equilibrium’’ situations, in contrast to Theorem 7 and a related work also presumes this by the remark: 13

‘‘The surprising finding is that we shall need the assumption of local electrochemical equilibrium in the reaction coordinate 14

space’’ [p. 13471; 10a]. Indeed, the application is ‘‘set up by non-equilibrium thermodynamics’’ [p. 9170; 10b] where ‘‘non- 15

equilibrium thermodynamics’’ specifically refers there to the PLE adhering, linear theory described in [6a]. 16

3. Concluding remarks 17

The above results were derived by first developing the Clausius Inequalities for a multicomponent thermodynamical 18

theory. The results were then used demonstrate that (i) that the PLE is not fundamental and (ii) that the large scale 19

development and publication of supposedly new non-equilibrium entropies and state functions thought to arise from 20

the Clausius inequality through a compensated heat term is largely incorrect. An allied concept is that introduced 21

by Truesdale [11] termed the ‘‘Clausius-Duhem’’ inequality which forms the basis of his very influential ‘‘rational 22

thermodynamics’’ which is expressed in the form 23

d
dt

H ≥ −

∫
∂P

q.n
θ

da +

∫
P

r
θ
dm, 24

with H =
∫
P ηdm being the total entropy of part P , θ the thermodynamical temperature, q the heat flux to the surface 25

∂P with unit normal n and r the ‘‘external’’ heat supply. Benofy and Quay have criticized this form as contradictory to the 26

Fourier inequality [12] and Second Law statements; of interest here is that a singular ‘‘total entropy’’ is postulated without 27

proof by Truesdale and all other specialists, and which is not in accord with the current development. The other feature is 28

the manner in which heat is introduced into the system by ‘‘puncturing’’ the surface, so that a well-defined boundary does 29

not exist between system and environment at all times. Most of the world’s literature on thermodyamics by specialists are 30

based on ad hoc postulates backed by complex algebra and differential equations without being rooted in fundamental and 31

obvious observations, such as to be found in the original statements of Planck, Clausius and Kelvin. Here the Inequalities are 32

precisely stated and provides a basis for a much needed elaboration that this current rudimentary development lacks. 33
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